
Strategy-Proofness in the Stable Matching Problem with
Couples

Andrew Perrault, Joanna Drummond, and Fahiem Bacchus
Department of Computer Science

University of Toronto, Toronto, CANADA
{perrault, jdrummond, fbacchus}@cs.toronto.edu

ABSTRACT
Stable matching problems (SMPs) arising in real-world mar-
kets often have extra complementarities in the participants’
preferences. These complementarities break many of the
theoretical properties of SMP and make it computationally
hard to find a stable matching. A common complementarity
is the introduction of couples in labor markets, which gives
rise to the stable matching problem with couples (SMP-C).
A major concern in markets is strategy-proofness since mar-
kets that are easily manipulated often unravel. In this pa-
per we provide some key insights into the issue of strategy-
proofness in SMP-C. We provide theoretical results that
relate the set of resident Pareto optimal stable matchings
(RPopt) admitted by an SMP-C instance to the ability of
the residents to manipulate. We show that a mechanism
returning an RPopt matching is, in certain cases, strategy-
proof against residents attempting to manipulate by trun-
cating their preference lists. We provide an algorithm for
finding an RPopt matching when one exists. And finally, we
study empirically the frequency of multiple stable and mul-
tiple RPopt matchings as the market sizes grows, and under
different proportions of couples in the market. Our empiri-
cal results indicate that SMP-C becomes less susceptible to
manipulation as both the size of the market grows and the
fraction of couples in the market shrinks.

General Terms
Economics, Algorithms, Theory

Keywords
Stable Matching; Complementarities; Strategy-proofness; SAT

1. INTRODUCTION
The Stable Matching Problem (SMP), in which two groups

wish to be matched with each other, is one of the most
widely-studied problems in economics [11, 7]. A number of
real-world applications can be cast as SMP, with residency
matching being one the most well-known [18, 22, 1]. The
National Resident Matching Program (NRMP) in the US,
and the Scottish Foundation Allocation Scheme (SFAS) in
Scotland, are two real-world instantiations of such matching

Appears in: Proceedings of the 15th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2016),
J. Thangarajah, K. Tuyls, C. Jonker, S. Marsella (eds.),
May 9–13, 2016, Singapore.
Copyright c⃝ 2016, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

markets [17, 9]. The SMP framework however does not al-
low for complementarities between the participants’ prefer-
ences. In resident matching an important complementarity
arises from couples among the residents: a resident’s pref-
erences can depend on the match received by their partner.
To address this need for couples to coordinate their place-
ment, residency matching markets (including the NRMP
and SFAS) began allowing couples to express their prefer-
ences over residency programs jointly. This extension to
SMP is called the Stable Matching Problem with Couples.

As in SMP, the goal of SMP-C is to find a match such that
no pair (one from each side of the market) has an incentive
to defect from their assignment. A matching with this prop-
erty is said to be stable. In standard SMP, there always
exists a resident-optimal stable matching (Ropt) in which
every resident is as least as well off as in any other stable
matching; and the simple Deferred Acceptance (DA) algo-
rithm [6] can find this Ropt matching in polynomial time.
These properties no longer hold for SMP-C. Finding a sta-
ble matching in SMP-C becomes NP-complete [20]; a stable
matching is not guaranteed to exist; and even when one does
exist, an Ropt matching might not exist.

While there are many strategy-proofness results for SMP,
little work has investigated strategy-proofness in SMP-C.
For SMP, it is known that no stable matching mechanism
is strategy-proof for both sides of the market [21]. There
are, however, mechanisms that are approximately stable and
approximately strategy-proof where the approximation be-
comes better as the market size grows [10]. Furthermore,
in SMP an Ropt matching always exists and a mechanism
returning it is known to be strategy-proof against manipu-
lation by the residents [6].

Since SMP-C extends SMP there also can be no stable
mechanism for SMP-C that is strategy-proof for both sides
of the market. Furthermore, the limit results of [8, 10] are
not known to hold for SMP-C. To the authors’ knowledge,
no investigation of strategy-proofness against residents in
SMP-C has been published. This is a gap in the litera-
ture since strategy-proofness on one side of the market is
frequently cited as an important property for real world
matching mechanisms; e.g., there is evidence that mecha-
nisms lacking this property are often abandoned in favor of
strategy-proof ones [2].

In this paper we investigate the question of strategy-proof-
ness against residents in SMP-C. We show that in general,
no resident strategy-proof mechanism exists for SMP-C, but
that there is a mechanism that is resident strategy-proof
with respect to truncations when the SMP-C instance has

an Ropt matching. Furthermore, we provide an algorithm
for implementing this mechanism. When no Ropt matching
exists this mechanism will return a resident Pareto optimal
(RPopt) matching (as long as the instance has at least one
stable matching). We show that residents who have a unique
match among the set of RPopt matchings cannot manipu-
late this mechanism by truncating their preferences. We also
show, however, that no stable mechanism can be strategy-
proof when the residents can use the more general manip-
ulation of reordering their preferences, even in the setting
where a unique stable matching exists.

We empirically evaluate the set of stable andRPopt match-
ings in instances drawn from two different synthetic markets
(previously developed by Kojima et al. and Biró et al. [13,
15]). For problem instances of similar size and percentage
of couples as the NRMP data investigated by Roth and Per-
anson [23], we find that nearly all problem instances admit
an Ropt matching, and the DA-style algorithm presented by
Roth and Peranson almost always finds that Ropt matching.
Thus, in conjunction with our theoretical work, we provide
an alternate hypothesis for behaviour seen by Roth and Per-
anson [23]: any mechanism that returns aRopt matching will
be resident strategy-proof with respect to truncations. We
additionally find that the theoretical result of Immorlica and
Mahdian [8] for large markets appears to hold for SMP-C,
even though that result was only proved for SMP.

Section 2 formally defines SMP-C and RPopt matches.
Section 3 discusses strategy-proofness in SMP-C and pro-
vides some theoretical results for this question. Section 4
describes our algorithms for finding RPopt matchings in
SMP-C. These algorithms are extensions of a prior SAT
based algorithm for SMP-C [5]. Section 5 provides our em-
pirical results, investigating properties of the set of RPopt

matchings as the size and percentage of couples in the mar-
ket varies. We conclude in Section 6.

2. BACKGROUND
The stable matching problem with couples (SMP-C) can

be formalized in terms of the residency matching problem
[23]. In this problem doctors wish to be matched with a
hospital residency program,1 and programs wish to accept
some number of residents. Both doctors and programs have
preferences over who they are matched with, expressed as
ranked order lists (ROLs). Some doctors are members of a
couple, and these couples provide a joint ROL.2 Both doc-
tors’ and programs’ ROLs can be incomplete: any alterna-
tive not listed in their ROL is considered to be unacceptable.
That is, they would rather not be matched at all than be
matched to an alternative not on their ROL. The SMP-C
problem is to find a stable matching, such that no doctor-
program pair has an incentive to defect from the assigned
matching.

2.1 SMP-C
More formally, let D be a set of doctors and P be a set of

programs. Since there is a preference to be unmatched over
an unacceptable match, we use nil to denote this alternative:
matching a program p to nil indicates that p has an unfilled
slot while matching a doctor d to nil indicates that d was

1Each residency program is in a specific medical speciality.
2Members of a couple often pursue different specializations
and so must apply to different programs.

not placed into any program. Let D+ and P+ denote the
sets D ∪ {nil} and P ∪ {nil} respectively.

The doctors are partitioned into two subsets, S ⊆ D and
D \ S . S is the set of single doctors and D \ S is the set of
doctors who are in couple relationships. Couples are speci-
fied by a set of pairs C ⊆ (D \S)×(D \S). If (d1, d2) ∈ C we
say that d1 and d2 are each other’s partner. We require that
every doctor who is not single (i.e., every doctor in D \ S)
have one and only one partner in C . Each program p ∈ P
has an integer capacity capp > 0 specifying the maximum
number of doctors p can accept.

Everyone participating in the matching market has prefer-
ences over their possible matches. Each participant a spec-
ifies their preferences in a ROL, rola, which lists a’s pre-
ferred matches from most preferred to least preferred. The
ROLs of single doctors d ∈ S contain programs from P+;
the ROLs of couples c ∈ C contain pairs of programs from
P+×P+; and the ROLs of programs p ∈ P contain doctors
from D+. Every ROL is terminated by nil (couple ROLs are
terminated by (nil , nil)) since being unmatched is always the
least preferred option, but is preferred to any option not on
the ROL.

The order of items on a’s ROL defines a partial ordering
relation where x ≽a y indicates that a prefers x to y (x
appears before y on a’s ROL) or x = y. We define ≻a, ≼a,
and ≻a in terms of ≽a and equality in the standard way.
We say that x is acceptable to a if x ≽a nil . (Note that
unacceptable matches are not ordered by ≽a and that nil is
always acceptable.)

We define a choice function Chp() for programs p ∈ P .
Given a set of doctors R, Chp(R) returns the subset of R
that p would prefer to accept. In our setting Chp(R) returns
the maximal subset of R such that for all d ∈ Chp(R), d ≻p

nil , for all d′ ∈ R−Chp(R), d ≻p d′, and |Chp(R)| ≤ capp .
That is, all doctors in Chp(R) are acceptable, are strictly
preferred to all doctors not chosen, and p’s capacity is not
violated. It is also convenient to give the null program a
choice function as well: Chnil (O) = O, i.e., nil will accept
any and all matches.

We use the notation ranked(a) to denote the set of op-
tions that a could potentially be matched with. For single
doctors d and programs p this is simply the ROLs of d (rold)
and p (rolp). For a doctor that is part of a couple (d1, d2),
ranked(d1) = {p1|∃p2.(p1, p2) ∈ rol (d1,d2)} and similarly for
d2. Note we always have that nil ∈ ranked(a).

Finally, we will sometimes use rola as an indexable vector
(zero-based). We define the function ranka(x) to find the
index i of x in a’s rol : ranka(x) = i iff rola[i] = x. When
x ̸∈ rola we let ranka(x) = |rola| (an out of bounds index).

2.2 Stable Matchings

Definition 1. A matching µ is a mapping from D to P+.
We say that a doctor d is matched to a program p under µ
if µ(d) = p, and that p is matched to d if d ∈ µ−1(p).

We want to find a stable matching where no doctor-
program pair has an incentive to defect. We call the pairs
that do have an incentive to defect blocking pairs. First we
define the condition willAccept(p,R, S) to mean that given
the set of doctors R ∪ S, p will accept a set that includes
R: willAccept(p,R, S) ≡ R ⊆ Chp(S ∪R).

Definition 2. Let µ be a matching.

1. A single doctor d ∈ S and a program p ∈ P is a block-
ing pair for µ if p ≻d µ(d) and willAccept(p, {d}, µ−1(p)).

2. A couple c = (d1, d2) ∈ C and a program pair (p1, p2) ∈
P+×P+ with p1 ̸= p2 is a blocking pair for µ if and
only if (p1, p2) ≻(d1,d2) (µ(d1), µ(d2)), willAccept(p1,
{d1}, µ−1(p1)), and willAccept(p2, {d2}, µ−1(p2)).

3. A couple c = (d1, d2) and a program p ∈ P is a
blocking pair for µ if (p, p) ≻(d1,d2) (µ(d1), µ(d2))
and willAccept(p, {d1, d2}, µ−1(p)).

Definition 3. A matching µ is individually rational if
(a) for all d ∈ S , µ(d) ≽d nil , (b) for all c = (d1, d2) ∈ C ,
(µ(d1), µ(d2)) ≽c (nil ,nil), (c) for all d ∈ µ−1(p), d ≽p nil ,
and (d) for all p ∈ P , |µ−1(p)| ≤ capp .

Definition 4. A matching µ is stable if it is individually
rational and no blocking pairs for µ exist.

2.3 Resident Preferred Matchings
The set of stable matchings can be quite large. In SMP

(where there are no couples) this set is always non-empty [6]
and has a nice structure: it forms a lattice under the partial
order ≽R defined as follows.

Definition 5. A matching µ1 is resident preferred to
another matching µ2 [11], denoted by µ1 ≽R µ2 , if for all
a ∈ S ∪C we have that µ1(a) ≽a µ2(a). We also define ≻R,
≺R, and ≼R in terms of ≽R and equality in the standard
way. In particular, µ1 ≻R µ2 whenever µ1 ≽R µ2 and for
at least one a ∈ S ∪ C we have that a strictly prefers µ1

to µ2 (µ1(a) ≻a µ2(a)). When µ1 ≻R µ2 we say that µ1

dominates µ2.

Definition 6. We say that a matching µ is resident op-
timal, written Ropt (µ) if µ is stable and it dominates all
other stable matches. That is, for all stable matches µ′ not
equal to µ we have that µ ≻R µ′.

Note that we restrict the resident-optimal matching to be
stable. It can be observed that when a matching µ is resident
optimal (Ropt (µ)) then for any a ∈ S ∪ C , µ(a) is the best
match for a offered by any stable matching.

Resident optimality is generally cited as an important
property for stable matching algorithms (e.g., [6, 23]). In
SMP the fact that the stable matchings form a lattice under
≽R implies that a resident-optimal matching always exists.
In the presence of couples however, stable matchings may
not exist and even when they do anRopt matching might not
exist. However, the ≽R relation is still well defined, and for
SMP-C leads to potentially multiple resident Pareto-optimal
matchings.

Definition 7. We say that a matching µ is resident Pareto
optimal, written RPopt (µ), if µ is stable and there does not
exist another stable matching µ′ such that µ′ ≻R µ.

It is easy to see that in SMP-C every stable matching
µ is either an RPopt or is dominated by an RPopt match-
ing. This also means that an SMP-C instance has an Ropt

matching if and only if it has a unique RPopt matching.

2.4 Mechanisms and Strategy-Proofness
Definition 8. A mechanism for SMP-C is any algorithm

that takes an SMP-C instance as input and returns a match-
ing. A stable mechanism is a mechanism that always re-
turns a stable matching if one exists and otherwise returns

the empty matching (i.e., everyone is matched to nil).3 A
P mechanism is one that always returns a matching sat-
isfying property P if one exists and the empty matching
otherwise.

Definition 9. Let rol∗α be the complete, true preferences
of resident or couple α. rol∗α consists of a number of pro-
grams or program pairs, then the nil program, and then the
remaining programs or program pairs. α is truthful if their
reported rolα is the same as rol∗α up to and including the
nil program. α manipulates if they are not truthful. Any
manipulation is a reordering of rol∗α. A manipulation is
a truncation at rank i if the reported rolα is the first i
elements of rol∗α followed by nil .

Definition 10. A mechanism m for SMP-C is resident
strategy-proof when for every SMP-C instance being truth-
ful is a dominant strategy for every resident and couple.
That is, no resident or couple in any SMP instance can im-
prove their matching under m by manipulating. When no
resident or couple can improve their matching using only
truncation manipulations, we say that m is resident strat-
egy-proof against truncation.

Definition 11. Let α be a resident (couple) in an SMP-C
instance I . A program p (pair of programs) is a P program
for α in I if there exists a matching µ for I such that µ
satisfies property P and p = µ(α).

3. STRATEGY-PROOFNESS IN SMP-C
The current NRMP mechanism was developed partly in

response to concerns that the previous mechanism could be
manipulated by residents by misreporting their ranking of
programs [23]. In SMP, it is possible to achieve strategy-
proofness for either side of the market by using a mechanism
that returns the resident or program-optimal matching4 [25].
The administrators of the NRMP perceived that residents
had a much higher average difference in utility between ad-
jacent elements on their rol ; thus, the NRMP decided that
they wanted a mechanism that was as close to resident strat-
egy-proof as possible.

Roth and Peranson hypothesized that since there is a rel-
atively small fraction of couples in the NRMP (4% in their
historical data), the resident strategy-proof mechanism for
SMP that returns the Ropt matching could be generalized to
SMP-C and the result would be similar [23]. Although their
mechanism was not in fact an Ropt mechanism it was quite
successful empirically—less than 10 residents (out of 30,000)
had an incentive to manipulate via truncation. While not all
manipulations are truncations, they tested for truncations
for several reasons: i) any outcome that can be achieved by
manipulation in SMP can be achieved by a truncation [26]
ii) profitable truncations are computationally inexpensive to
check for, and iii) truncations are the kind of manipulations
that can be potentially identified with the least information
about others’ preferences [24].

To our knowledge, no theoretical strategy-proofness re-
sults exist for SMP-C. We hypothesized that if we restricted

3An SMP-C instance might have no stable matchings, so we
cannot define a stable mechanism to be one that always
returns a stable matching as in [21].
4Strategy-proofness for both sides of the market is only pos-
sible for a small number of instances of SMP [21].

our attention to SMP-C instances in which anRopt matching
exists, then an Ropt mechanism would be resident strategy-
proof. As shown in Theorem 2 below, we found that this is
not the case. We did find, however, that such a mechanism
is resident strategy-proof against truncations. This is useful
in practice. In particular, as we will show in Sec. 5, an Ropt

matching frequently exists in SMP-C instances that have a
low proportion of couples. Furthermore, truncations are an
attractive way to manipulate because of the computational
and informational properties mentioned above. Hence, an
Ropt mechanism can at least block this simpler form of ma-
nipulation in many practical cases.

We begin with a lemma that establishes a limit on the
ability of truncating agents to benefit from manipulation.

Lemma 1. Let α be an agent who truncates their prefer-
ences at rank i in an SMP-C instance I. Let Ω be the set of
stable matchings before the truncation and let Ω′ be the set
of stable matchings after the truncation. For any µ ∈ Ω′,
either i) µ ∈ Ω or ii) µ(α) = nil.

Proof. Let µ′ be a matching in Ω′ where α is not matched
to nil . It must be the case that µ′(α) is ranked above i; oth-
erwise µ′(α) would be unacceptable to α and µ′ would be
unstable. Since rolα is the same as rol∗α above rank i and
the rank order lists of all of the other agents and programs
in the instance are the same, µ′ must also be stable before
α truncates. Thus µ′ ∈ Ω.

Theorem 1. Let α be a resident or couple in an SMP-C
instance I. For any property P, if α has a unique P program
in I, then for any P mechanism yP , α cannot improve its
matching under yP using only truncation manipulations (α
has no incentive to manipulate under yP).

Proof. The theorem says that there exists a program
(or pair of programs) p such that for all P matchings µ we
have that µ(α) = p, so before truncation yP returns p as
α’s match. After truncation, by Lemma 1, yP must return
either p or nil as α’s match. Neither of these improve α’s
match.

A corollary is that in an instance of SMP-C that has an
Ropt matching, a Ropt mechanism is resident strategy-proof
against truncation. However, such mechanisms are not resi-
dent strategy-proof, as reordering manipulations can still be
beneficial.

Theorem 2. Let yRopt be an Ropt mechanism for SMP-
C. Then yRopt is strategy-proof against residents who ma-
nipulate via truncation. However, yRopt is not strategy-proof
against residents who manipulate via reordering.

Proof. Part I: For any SMP-C instance I, if I has an
Ropt matching then every resident has a unique Ropt pro-
gram. Then by Theorem 1 no resident has an incentive to
manipulate yRopt using truncation. Otherwise yRopt always
returns the empty match, and again no resident has an in-
centive to manipulate.

Part II: Reordering is not strategy-proof. We provide a
counterexample in Figure 1. The preferences provided show
residents’ and programs’ true preferences. Couples are iden-
tified by their resident-resident pair, and give joint prefer-
ences as expected. Given these true preferences, only one
stable matching exists: µ(r0) = c, µ((r1, r2)) = (b, e), and

Resident preferences Program preferences

r0 : a ≻ b ≻ c ≻ d a : r3 ≻ r0 ≻ r1

(r1, r2) : (b, e) ≻ (a, d) b : r1 ≻ r0

(r3, r4) : (a, d) ≻ (c, e) c : r3 ≻ r0

d : r0 ≻ r2 ≻ r4

e : r4 ≻ r2

Figure 1: An instance that is manipulable by r0 us-
ing reordering under any mechanism. Each program
has capacity 1.

Resident preferences Program preferences

(r0, r1) : (d, b) ≻ (a, c) a : r0 ≻ r2 ≻ r4

(r2, r3) : (e, c) ≻ (b, d) ≻ (a, c) b : r2 ≻ r1

(r4, r5) : (a, c) ≻ (e, nil) c : r1 ≻ r3 ≻ r5

d : r0 ≻ r3

e : r4 ≻ r2

Figure 2: An instance that is manipulable for trun-
cating residents under any stable mechanism. Each
program has capacity 1.

µ((r3, r4)) = (a, d). However, even though only one sta-
ble matching exists (and thus this matching is Ropt), the
single resident r0 has an incentive to manipulate via re-
ordering. Instead of reporting a ≻ b ≻ c ≻ d (r0’s true
preferences) r0 can be matched to b instead of c by report-
ing b ≻ d ≻ c ≻ a. (All other participants in the market
report their true preferences.) The resulting matching is
µ′(r0) = b, µ′((r1, r2)) = (a, d), and µ′((r3, r4)) = (c, e).
µ′ was not stable under the original preferences, and single
resident r0 is better off than when they reported their true
preferences.

We can strengthen the latter result of Theorem 2. Using
the same instance from that proof, we can show that:

Theorem 3. No stable mechanism for SMP-C is resident
strategy-proof.

Proof. Since the instance of Figure 1 has only one stable
matching before and after r0 reorders, any stable mechanism
is manipulable by r0.

Thus, reorderings are a powerful way of manipulating in
SMP-C. Reorderings can remove old stable matchings and
create new ones allowing great scope for beneficial manip-
ulations. In fact, for SMP-C, strategy-proofness is a very
strong requirement due to diversity of instances. Hence,
we can further strengthen Theorem 3 to show that even less
general manipulations by truncations suffice to foil strategy-
proofness for stable mechanisms.

Theorem 4. No stable mechanism for SMP-C is resident
strategy-proof against truncations.

Proof. Figure 2 shows an instance that can be manipu-
lated by couple (r0, r1) or couple (r2, r3). This instance has
two stable matchings, µ and µ′:

µ((r0, r1)) = (a, c), µ((r2, r3)) = (b, d), µ((r4, r5)) = (e, nil)

µ′((r0, r1)) = (d, b), µ′((r2, r3)) = (a, c), µ′((r4, r5)) = (e,nil)

Resident preferences Program preferences

(r0, r1) : (d, b) ≻ (a, c) ≻ (g, h) a : r0 ≻ r2

(r2, r3) : (a, f) ≻ (b, e) b : r8 ≻ r2 ≻ r2 ≻ r7 ≻ r1

(r4, r5) : (c, e) ≻ (d, f) c : r1 ≻ r4

(r6, r7) : (d, b) ≻ (g, h) d : r4 ≻ r0 ≻ r6

(r8, r9) : (b, g) e : r3 ≻ r5

f : r5 ≻ r3

g : r0 ≻ r6 ≻ r9

h : r7 ≻ r1

Figure 3: An instance where the RPopt mechanism
is weak to truncations. (r0, r1) manipulates and each
program has capacity 1.

(r0, r1) prefers µ′ to µ and (r2, r3) prefers µ to µ′. By
truncating their rank-order list at rank 1, each couple can
guarantee that their preferred stable matching is selected by
the mechanism. Thus, any stable mechanism is manipulable
by at least one of the two couples.

In this situation it is unclear what mechanism to use for
SMP-C when an Ropt matching does not exist. By extend-
ing the analogy with SMP, it would be intuitive for RPopt

mechanisms to be harder to manipulate via truncations than
other stable mechanisms. However, Lemma 1 states that a
truncating agent a may create new stable matchings where
they are matched to nil . A stable mechanism might return
one of these matching. Therefore, a might have a disin-
centive to manipulate by truncation because the mechanism
might now return a matching in which a is unmatched. How-
ever, these new matches of a to nil might not be RPopt . In
this case they would not be returned by an RPopt mecha-
nism. Hence, with an RPopt mechanism a might no longer
have a disincentive to manipulate. Figure 3 shows an in-
stance where this occurs. Initially, there are four stable
matchings and two RPopt matchings (not shown in the fig-
ure). By truncating, (r0, r1) can eliminate one of the RPopt

matchings while also creating a new stable matching µ where
they are matched to (nil , nil). However, µ is not RPopt , and
so (r0, r1) can freely manipulate an RPopt -mechanism with-
out fear of being matched to (nil ,nil). Hence there are stable
mechanisms that are strategy-proof against truncations for
this instance, but some RPopt mechanisms are not.

Despite this difficulty in comparing the strategy-proofness
of RPopt mechanisms with other stable mechanisms, we will
show in Sec. 5 that empirically Theorem 1 can be used to
show that often a larger number of residents will have no
incentive to manipulate an RPopt mechanism than a stable
mechanisms.

4. ALGORITHMS FOR SMP-C
The standard approach to finding a stable matching in

SMP-C has been to extend the deferred acceptance algo-
rithm so that it can handle couples (e.g., [23, 12, 3]). How-
ever, these extensions are incomplete: they are unable to
determine whether or not a stable matching exists, and even
when a stable matching does exist they might not be able
to find one.

Since SMP-C is known to be NP-Complete [20] it is also
possible to encode it as another NP-Complete problem. For

example, it can be encoded as a SAT (satisfiability) problem
or as IP (integer program) problem [5, 4]. The advantage
of doing this is that SAT and IP solvers have become very
advanced and are routinely able to solve large practical prob-
lems. Another advantage of these solvers is that when given
an instance for which no stable matching exists, they are
often able to prove this.

4.1 DA-Style Algorithms for SMP-C
The basic principle of DA algorithms [6] is that members

of one side of the market propose down their ROLs while
the other side either rejects those proposals or holds them
until they see a better proposal: once all proposals have
been made the non-rejected proposals are accepted forming
a match.

Roth and Peranson develop a DA algorithm, RP99, ca-
pable of dealing with couples [23]. This algorithm has been
used with considerable success in practice, including most
famously for finding matches for the NRMP which typically
involves about 30,000 doctors [16]. RP99 employs an itera-
tive scheme. After computing a stable matching for all single
doctors, couples are added one at a time and a new stable
matching computed after each addition. The algorithm uses
DA at each stage to find these stable matchings. Matching
a couple can make previously made matches unstable and
in redoing these matches the algorithm might start to cycle.
Hence, cycle checking (or a timeout) is sometimes needed to
terminate the algorithm.

Kojima et al. develop a simple “sequential couples algo-
rithm,” which they use to show that the probability of a
stable matchings existing goes to one under certain assump-
tions [12]. However, this simple algorithm is not useful in
practice as it declares failure under very simple conditions.
Kojima et al. also provide a more practical DA algorithm,
KPR, that they use in their experiments. The main dif-
ference between KPR and RP99 is that KPR deals with all
couples at the same time—it does not attempt to compute
intermediate stable matchings. Drummond et al. found that
KPR was much more efficient than RP99 [5].

Finally, Ashlagi et al. extend the analysis of Kojima et
al., developing a more sophisticated “Sorted Deferred Ac-
ceptance Algorithm” and analyzing its behaviour [3]. This
algorithm is designed mainly to be amenable to theoretical
analysis rather than for practical application.

4.2 Solving SMP-C via SAT
Drummond et al. developed SAT-E, an effective encod-

ing of SMP-C into SAT, and evaluated its performance on
synthesized SMP-C problem instances [5]. They found that
their encoding, used in conjunction with a state-of-the art
SAT solver, scaled well, outperformed an IP encoding they
also developed, and could find solutions to problem instances
that the DA-style algorithms could not.

Given an SMP-C instance ⟨D ,C ,P ,ROLs⟩, where ROLs
is the set of all participant ROLs, SAT-E(⟨D ,C ,P ,ROLs⟩)
can be viewed as a function that returns a SAT encoding in
CNF (conjunctive normal form), which is the input format
taken by modern SAT solvers.

We highlight three important things about SAT-E:

1. For any SMP-C instance I = ⟨D ,C ,P ,ROLs⟩, the
satisfying models of SAT-E stand in a one-to-one cor-
respondence with the stable models of I.

2. SAT-E includes the set of propositional variablesmd[p].

ALGORITHM 1: SAT-RPopt . Given an SMP-C in-
stance return a RPopt matching or the empty match if
none exists.
Input: I = ⟨D ,C ,P ,ROLs⟩ an SMP-C instance.
Output: An RPopt matching for I.

1 CNF ← SAT-E(I)
2 µ ← ∅
3 while true do
4 (sat?,π) ← SatSolve(CNF)

/* SatSolve returns the status (sat or unsat) and a
satisfying model π if sat */

5 if not sat? then
6 return µ // Return last match found.
7 µ← stable matching corresponding to π
8 c← {¬md[p] |µ(d) = p} // Block this match
9 CNF ← CNF ∪ {c}

10 for d ∈ S do //d must get an equally good match
11 cd ← {md[p] | p ≽d µ(d)}
12 CNF ← CNF ∪ {cd}
13 for c ∈ C do //c must get an equally good match
14 cc ← {mc[i] | i = rank c(µ(c))}
15 CNF ← CNF ∪ {cc}

In any satisfying model, π, md[p] is true if and only if
µ(d) = p in the stable matching µ corresponding to π.

3. SAT-E also includes the set of propositional variables
mc[i]. In any satisfying model, π, mc[i] is true if and
only if in µ, the stable matching corresponding to π, c
is matched to a program pair they rank i or above in
their ROL.

4.3 Finding RPopt matchings
To implement an RPopt mechanism we need to find an

RPopt matching. Using SAT-E and the above three facts,
we provide SAT-RPopt for finding an RPopt matching. This
algorithm will also return an Ropt matching if one exists (as
an Ropt matching exists if and only if there is there is only
one RPopt matching).

SAT-RPopt takes an SMP-C instance as input and con-
structs the SAT-E encoding for that instance. It finds a
stable matching µ and then tries to find a new matching
that dominates µ. This is accomplished by adding a block-
ing clause c to the SAT encoding. This clause c is a disjunc-
tion that says that no future solution is allowed to return
the same stable model (one of the mappings µ(d) = p of
all future solutions must be different, i.e., one of the vari-
ables md[p] made true by µ must be false in every future
matching). Along with the blocking clause, other clauses
are added to ensure that in the next matching no doctor
or couple receives a worse matching. For single doctors d a
clause is added that says that d must be matched to a pro-
gram it ranks at least as high as µ(d), and for every couple c
a (unit) clause that says that c must be matched to a pair of
programs it ranks at least as highly as µ(c). This causes the
new match to be ≽R µ, and since the new match cannot be
equal it must be ≻R µ. That is, the new match must dom-
inate µ. If no dominating match can be found, the current
match is RPopt and we return it. Note that an instance has
no RPopt matching if and only if it has no stable matching.
So if the very first SAT call fails, there is no RPopt matching
and the empty matching will be returned.

ALGORITHM 2: SAT-ENUM. Find all stable models
of an inputted SMP-C instance

Input: I = ⟨D ,C ,P ,ROLs⟩ an SMP-C instance
Output: Find all stable models of I

1 CNF ← SAT-E(I)
2 while true do
3 (sat?,π) ← SatSolve(CNF)
4 if sat? then
5 µ← stable matching corresponding to π
6 output(µ)
7 c← {¬md[p] |µ(d) = p}
8 CNF ← CNF ∪ {c} // Block µ
9 else

10 return // All stable matchings found.

In our experiments (Sec. 5) we also need to find all the
stable matchings of an instance. This can be accomplished
with SAT-ENUM. SAT-ENUM uses a sequence of SAT calls
each one returning a stable match. After each stable match
is found we ensure that no future stable match is the same by
adding a blocking clause to the SAT encoding as described
for Algorithm 1.

5. EMPIRICAL RESULTS
We use SAT-ENUM to find all stable matchings for two

distributions of synthetic data, which we call: i) impartial
culture with geography (ic-geog), and ii) SFAS-tuned with
geography (sfas-geog). ic-geog generates heterogeneous
preference profiles; each resident has an equal chance of
drawing any program as her first choice. sfas-geog gener-
ates more homogeneous profiles; certain programs are much
more likely to be in a given resident’s top 10. The mod-
els have slightly different procedures for generating couples
preferences, but both models assign each program a geo-
graphic region and require that, for any program pair in a
couple’s ROL, the programs are in the same region. We de-
scribe the models in detail below. We then evaluate how fre-
quently these instances admitRopt and unique stable match-
ings for various parameters of the markets.

5.1 Statistical Models of SMP-C Instances
ic-geog is the model presented Kojima et al. [12, 13]. It

draws residents’ and programs’ preferences from the impar-
tial culture model (i.e., i.i.d. uniform). All residents draw
i.i.d. an ROL of size 10. For singles, this is their final ROL
after appending nil . To generate a couple’s joint ROL, all
112 pairs are scored via a Borda-like scoring function, break-
ing ties according to an arbitrarily chosen member of the
couple’s preferences. However, as a couple’s preferences are
constrained by geography, a pair of programs is only added
to the joint ROL if both programs are in the same geographic
region (or one is nil). Each program is randomly assigned
one of 5 regions. Each program ranks each resident that
ranks them, again with preferences i.i.d. uniform.

sfas-geog is a variant of the model presented by Biró
et al. to mimic SFAS [15]. All residents draw i.i.d. a ROL
of size 10 from a Plackett-Luce model [19, 14], where the
most popular program (resp., resident) is five times more
popular than the least popular program (resp., resident) as
seen in the SFAS market. All other programs’ popularity
are linearly interpolated between the most and least popu-

Figure 4: Average number of additional stable pro-
grams per resident as market size increases, only
including satisfiable instances.

lar programs. Formally, given a reference ranking over all
programs (resp., residents), the value of the ith element in
the corresponding scoring vector is m + 4i, where m is the
number of programs (resp., residents) in the match. For
singles, this is their final ROL. For couples, all program-
program pairs in the same geographic region are ranked in
reverse lexicographic ordering, with arbitrary tie-breaking.
Each program is randomly assigned one of 5 regions.

In order to ensure that the underlying preference distri-
bution was responsible for any variance shown in the ex-
periments, sfas-geog is modified from Biró et al.’s original
description to mirror ic-geog in the following ways: i) we
fix all residents’ ROL to be length 10; ii) we allow programs
to rank all residents who rank them (again, drawing from
a Plackett-Luce model with the scoring vector as described
above); and iii) we impose the same geographical restriction
on couples’ joint ROLs as Kojima et al. do for ic-geog. In
addition to being more directly comparable to ic-geog, im-
posing the geographical restriction on the Biró et al. model
allows us to better capture couples’ real-world preferences in
larger markets. (The SFAS market has roughly 800 program
positions; we test up to 30,000 program positions.)

In both models, we set the number of positions as 87% of
the number of residents to match the 2015 NRMP data [17].
Each data point represents the average of 50 instances.

5.2 Results and Discussion
We begin by investigating the ability of residents to ben-

efit by truncating their preferences in SMP-C as the size
of the market gets large. Roth and Peranson found that,
when using RP99 on historical NRMP data, very few resi-
dents had an incentive to truncate [23]. They conjectured
that this was due to two reasons: i) as market size grows
large relative to ROL length, the size of the set of all stable
matches gets smaller, and ii) as in SMP, residents have no
incentive to manipulate when a market has a unique stable
matching. In Theorem 2, we prove the latter point for trun-
cations, but show that it is false for reorderings. Immorlica
and Mahdian proved the former point for SMP [8], and we
address it empirically for SMP-C in this section.

Figure 4 shows the average number of additional stable
programs per resident (i.e., in excess of one) for 10% and
30% residents in couples in ic-geog and sfas-geog models
as the market size increases.5 Note that every resident has

5Standard error in this graph is 0.003-0.005% for the 30%

Figure 5: Average number of additional RPopt

matchings per resident divided by average num-
ber of additional stable matchings per resident as
market size increases, only including satisfiable in-
stances.

Figure 6: Average number of additional RPopt pro-
grams per resident, and overall percentage of satis-
fiable instances, as fraction of residents in couples
increases. 20,000 programs.

at least one stable program because we restrict our attention
to SMP-C instances that are satisfiable. The models with
a larger percentage of couples have more stable programs
per resident, but the differences between ic-geog and sfas-
geog are small. We see that the average number of stable
programs per resident drops rapidly as the market size in-
creases, irrespective of model, which shows that an analog of
Immorlica and Mahdian’s result may apply in this setting.

In addition, we find that the residents’ ability to truncate
is even more strongly curtailed under an RPopt mechanism.
Figure 5 shows the average number of additional RPopt pro-
grams per resident relative to the average number of addi-
tional stable programs per resident. We see that generally
residents have much fewer additional RPopt programs than
additional stable programs. Since Figure 4 shows that the
average number of additional stable programs is well be-
low 1, this means that many residents have a unique stable
program and even more will have a unique stable RPopt

program. Hence, by Theorem 1 there will be more residents
with no incentive to manipulate an RPopt mechanism than
there are residents with no incentive to manipulate a stable
mechanism.

Figure 6 provides a more detailed picture of what happens

couples models with market size under 1000 programs and
less than 0.001% otherwise.

Figure 7: Average number of residents with multi-
ple RPopt programs as market size increases, only
including satisfiable instances.

to the number of additional RPopt programs per resident
as the fraction of residents in couples increases for a fixed
market size of 20,000. We see that the two models behave
similarly, showing a superlinear growth. On the other axis,
we see that although the average number of RPopt programs
per resident increases rapidly as the fraction of couples in-
creases, the percentage of instances with a stable matching
decreases. With 5% couples, almost all instances had at least
one stable matching for ic-geog and sfas-geog, while with
50% couples, fewer than 40% do. Thus, mechanism design-
ers in environments with a high fraction of couples will have
to contend with both the lack of existence of stable match-
ings and high incentives to truncate among residents.

We can conclude from Figure 5 that, under an RPopt

mechanism, residents will have substantially fewer programs
they can potentially be matched to as the result of a trunca-
tion. Combining this result with Figure 6, this effect is par-
ticularly strong for low percentages of couples in the market.
We find that both RP99 and KPR behave like RPopt mech-
anisms in instances with a fraction of couples similar to that
found in the NRMP in the 1990s (4% [23]). In particular, for
instances with 20,000 programs and 5% couples and multi-
ple stable matchings, KPR found an RPopt matching 100%
of the time and RP99 found an RPopt matching more than
93% of the time.6 Thus, i) RP99 is nearly an RPopt mech-
anism, ii) RPopt mechanisms can rarely be manipulated by
resident truncations on markets with a low percentage of
couples, and iii) when they can, only an extremely small
number of residents can benefit. We thus hypothesize that
the number of residents who could benefit by truncating ob-
served by Roth and Peranson was made lower by their ex-
ploitation of RPopt matchings rather than a small number
of stable matchings as they conjectured.

However, there is a peculiar caveat to these results: the
number of residents per instance with multiple stable or
RPopt programs does not seem to be affected by market size.
Figure 7 shows the average number of residents with multiple
RPopt programs for 10% and 30% residents in couples in ic-
geog and sfas-geog models as the market size increases.7

We see that the number of residents with multiple RPopt

programs does not decrease as market size increases. We

6There was a problem instance where an Ropt matching ex-
isted, and RP99 did not find it.
7Standard error in this graph is 0.3-0.5 for the 10% couples
models and 2.5-3.5 for the 30% couples models.

observed similar behaviour for the number of residents with
multiple stable matchings. Comparing ic-geog and sfas-
geog, we see that sfas-geog has more residents with mul-
tiple RPopt programs, which is consistent with the higher
fraction of RPopt programs in sfas-geog that we previously
observed. Unsurprisingly, the number of residents with mul-
tiple stable or RPopt programs is higher when the fraction
of couples is increased, since an instance with a higher frac-
tion of couples tends to have a larger number of stable and
RPopt matchings.

Since it only requires a single resident with multipleRPopt

programs to prevent the existence of a Ropt matching, we
likewise find that the frequency of instances that have Ropt

matchings is not affected by market size. Ropt matchings
exist 94.2% and 70.1% of the time for ic-geog with 10%
and 30% couples and 91.1% and 62.9% of time for sfas-
geog with 10% and 30% couples.

These results suggest that Roth and Peranson’s observa-
tion that few residents could benefit by truncating, was not
affected by the size of the market, further suggesting their
observation was only dependent on the percentage of resi-
dents in couples. While there may be some residents that
can benefit from truncating irrespective of market size, we
expect the fact that the number of them is so small to be a
strong disincentive to truncating in practice. It requires con-
siderable effort (e.g., learning the preferences of others) to
be able to truncate effectively, and these efforts will be very
unlikely to yield any benefit in sufficiently large instances.
In addition, truncating carries the risk that a resident will
become unmatched even under an RPopt mechanism.

6. CONCLUSIONS
In this paper we examined strategy-proofness for SMP-C,

showing that in general, no resident strategy-proof stable
mechanism exists. We do show that, for certain problem in-
stances, a stable matching mechanism that always returns an
RPopt matching is strategy-proof w.r.t. residents truncating
their preferences, and we extend a previously developed SAT
encoding to provide an RPopt mechanism. We empirically
show, on two very different preference distributions based on
real-world markets, that when a low percentage of couples
exist in the market, the RPopt mechanism is frequently re-
sistant to truncations, suggesting a new hypothesis for why
there is little incentive for residents to truncate their prefer-
ences in the NRMP.

Furthermore, our empirical results suggest new avenues
for theoretical research: we hypothesize that an analogous
SMP-C result exists for the Immorlica and Mahdian large
markets result for SMP [8]; we additionally hypothesize that
if the percentage of couples in the market grows slower than
the size of the market, an Ropt matching exists with high
probability (an analogous result to the Ashlagi et al. large
markets result [3]). We also wish to further use our exten-
sion to SAT-E to allow us to empirically explore different
properties of SMP-C, providing further insight into possible
theoretical results.

Acknowledgements
We acknowledge the support of NSERC. Drummond and
Perrault were supported by OGS. We thank the reviewers
for helpful suggestions.

REFERENCES
[1] A. Abdulkadiroglu, P. Pathak, A. E. Roth, and

T. Sönmez. The Boston public school match.
American Economic Review, 95(2):368–371, 2005.

[2] A. Abdulkadiroglu, P. Pathak, A. E. Roth, and
T. Sonmez. Changing the Boston school choice
mechanism. Technical report, National Bureau of
Economic Research, 2006.

[3] I. Ashlagi, M. Braverman, and A. Hassidim. Stability
in large matching markets with complementarities.
Operations Research, 62(4):713–732, 2014.

[4] P. Biró, D. F. Manlove, and I. McBride. The
hospitals/residents problem with couples: Complexity
and integer programming models. In Experimental
Algorithms, pages 10–21. Springer, 2014.

[5] J. Drummond, A. Perrault, and F. Bacchus. SAT is an
effective and complete method for solving stable
matching problems with couples. In Proceedings of the
Twenty-Fourth International Joint Conference on
Artificial Intelligence (IJCAI-15), 2015.

[6] D. Gale and L. S. Shapley. College admissions and the
stability of marriage. American Mathematical
Monthly, 69(1):9–15, 1962.

[7] D. Gusfield and R. W. Irvine. The stable marriage
problem: structure and algorithms. Foundations of
Computing Series. The MIT Press, 1989.

[8] N. Immorlica and M. Mahdian. Marriage, honesty,
and stability. In Proceedings of the Sixteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages
53–62, 2005.

[9] R. Irving. Matching practices for entry-labor markets -
scotland. 2011. Accessed: 2015-11-14.

[10] S. Kannan, J. Morgenstern, A. Roth, and Z. S. Wu.
Approximately stable, school optimal, and
student-truthful many-to-one matchings (via
differential privacy). In Proceedings of the
Twenty-Sixth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1890–1903, 2015.

[11] D. E. Knuth. Marriages stables. Les Presses de
I’Universite de Montreal, 1976.

[12] F. Kojima, P. Pathak, and A. E. Roth. Matching with
couples: Stability and incentives in large markets.
Quarterly Journal of Economics, 128(4):1585–1632,
2013.

[13] F. Kojima, P. Pathak, and A. E. Roth. Online
appendix matching with couples: Stability and
incentives in large markets. Quarterly Journal of
Economics, 128(4), 2013.

[14] R. D. Luce. Individual Choice Behavior: A Theoretical
Analysis. Wiley, 1959.

[15] I. McBride and D. F. Manlove. The hospitals /
residents problem with couples: Complexity and
integer programming models. CoRR, abs/1308.4534,
2013.

[16] National Resident Matching Program. National
resident matching program, results and data: 2013
main residency matchR⃝, 2013.

[17] National Resident Matching Program. National
resident matching program, results and data: 2015
main residency matchR⃝. 2015.

[18] M. Niederle, A. E. Roth, and T. Sonmez. Matching

and market design. In S. N. Durlauf and L. E. Blume,
editors, The New Palgrave Dictionary of Economics
(2nd Ed.), volume 5, pages 436–445. Palgrave
Macmillan, Cambridge, 2008.

[19] R. Plackett. The analysis of permutations. Applied
Statistics, 24:193–202, 1975.

[20] E. Ronn. NP-complete stable matching problems.
Journal of Algorithms, 11(2):285–304, 1990.

[21] A. E. Roth. The economics of matching: Stability and
incentives. Mathematics of Operations Research,
7(4):617–628, 1982.

[22] A. E. Roth. The evolution of the labor market for
medical interns and residents: A case study in game
theory. Journal of Political Economy, 92(6):991–1016,
1984.

[23] A. E. Roth and E. Peranson. The redesign of the
matching market for American physicians: Some
engineering aspects of economic design. The American
Economic Review, 89(1):748–780, September 1999.

[24] A. E. Roth and U. G. Rothblum. Truncation
strategies in matching markets—in search of advice for
participants. Econometrica, 67(1):21–43, 1999.

[25] A. E. Roth and M. Sotomayor. Chapter 16. two-sided
matching. In R. J. Aumann and S. Hart, editors,
Handbook of Game Theory Volume 1, pages 485–541.
Elsevier, 1992.

[26] A. E. Roth and J. H. Vande Vate. Random paths to
stability in two-sided matching. Econometrica,
58(6):1475–1480, 1990.

