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Abstract. Prediction-of-use (POU) games [18] address the mismatch
between energy supplier costs and the incentives imposed on consumers
by fixed-rate electricity tariffs. However, the framework does not ad-
dress how consumers should coordinate to maximize social welfare. To
address this, we develop MPOU games, an extension of POU games in
which agents report multiple acceptable electricity use profiles. We show
that MPOU games share many attractive properties with POU games
attractive (e.g., convexity). Despite this, MPOU games introduce new
incentive issues that prevent the consequences of convexity from being
exploited directly, a problem we analyze and resolve. We validate our ap-
proach with experimental results using utility models learned from real
electricity use data.
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1 Introduction

Prediction-of-use games were developed by Vinyals et al. [18], hereafter VRRJ,
to address the mismatch between the cost structure of energy suppliers and the
incentive structure induced by the fixed-rate tariff faced by consumers. In most
countries, energy suppliers face a two-stage market, where they purchase energy
at lower rates in anticipation of future consumer demand and then reconcile
supply and demand exactly at a higher rate at the time of realization through
a balancing market [I7]. The cost to energy suppliers is thus highly dependent
on their ability to predict future consumption. Since consumers typically have
little incentive to consume predictably, suppliers use past behavior to predict
consumption. The resulting prediction uncertainty incurs some additional cost
for suppliers.

One way to improve supplier predictions is to incentivize consumers to re-
port predictions of their own consumption, thus gaining access to the consumer’s
private information about the future. VRRJ analyze mechanisms where flat tar-
iffs are replaced with prediction-of-use (POU) tariffs, in which consumers make
a payment based on both their actual consumption and the accuracy of their
prediction. Similar tariffs have been deployed in practice [3]. VRRJ analyze the
cooperative game induced by POU tariffs, in which consumers form buying coali-
tions that reduce (aggregate) consumption uncertainty, and find that, under



normally-distributed prediction error, the game is convex, a powerful property
that significantly reduces the complexity of important problems in cooperative
games.

While attractive, the POU model has two significant shortcomings. First,
it does not model how consumers coordinate their consumption. A consumer’s
optimal consumption profile—a random variable representing possible behaviors
or patterns of energy consumption—depends on the profiles others use. In POU
games, the only consumer choice is what coalition to join—consumer demand is
represented by a single prediction, reflecting just one selected (or average) con-
sumption profile. In essence, consumers predict their behavior without knowing
anything about the other consumers in the game. While the POU model can offer
social welfare gains when the profiles are selected optimally, we show they can
result in significant welfare loss when profiles are uncoordinated. Second, POU
games have no concept of consumer utility. While POU tariffs are intended to
induce consumers to consume more predictably, the full welfare consequences of
such changes are not measured in the POU framework.

We introduce multiple-profile POU (MPOU) games, which extend POU games
to admit multiple consumer profiles (or “bids”). This allows consumers to coor-
dinate the behaviors that change their predictions, this allowing full realization
of the benefits of the POU model. We show that MPOU games have many of
the same properties that make the POU model tractable, e.g, convexity, which
makes the stable distribution of the benefits of cooperation easy to compute.
However, MPOU games also present a new challenge in coalitional allocation:
since one can only observe an agent’s (stochastic) consumption—not their un-
derlying behavior—determining stabilizing payments for coalitional coordination
requires novel techniques. We introduce separating functions, which incentivize
agents to take a specific action in settings where actions are only partially ob-
servable.

We experimentally validate our techniques, using household utility functions
that we learn (via structured prediction) from publicly-available electricity use
data. We find that the MPOU model provides a gain of 3-5% over a fixed-
rate tariff across several test scenarios, while a POU tariff without consumer
coordination can result in losses of up to 30%. These experiments represent the
first study of the welfare consequences of POU tariffs.

Section [2| reviews cooperative games, the POU model and related work. Sec-
tion [3] introduces MPOU games and Section [4] proves their convexity. Section
outlines the new class of incentive problems that arises when the mechanism
designer cannot (directly) observe an agent’s selected profile, and develops a
general solution to that problem. In Section [6 we describe an approach for
learning consumer utility models from real-world electricity usage data, and ex-
perimentally validate the value of MPOU games using these learned models in
Section [7



2 Background

2.1 Cooperative Games

We briefly overview the relevant aspects of cooperative game theory. A prediction-
of-use game is an instance of a cooperative game [9]. In a cooperative game, the
set N of agents divides into a set of coalitions, i.e., a disjoint partitioning of the
agents. In a profit game the characteristic function v : 2V — R represents the
value that any subset of agents can achieve by cooperating. A profit game is a
tuple (N, v).

The agents in a coalition can decide to distribute the benefits of cooperation
however they choose. An allocation is a payment function ¢t : N — R that
assigns some payment (which may be negative) to each agent. An allocation is
efficient if it distributes the entire value, i.e., > ,_y t(i) = v(IN). A major goal of
cooperative game theory is to find allocations that prevent agents from defecting
from their coalition, thus achieving stability. An allocation that stabilizes the
grand coalition of all agents is in the core.

Definition 1 Allocation ¢ is in the core of profit game (N, v) if it is efficient
and >}, o t(i) = v(S) for all S = N.

The core is a strong stability concept that may not exist for general games.
Another central solution concept is the Shapley value sc(i) of an agent ¢ in
coalition C, which emphasizes fairness and always exists. It values each agent
according to their marginal value contribution when averaged over all join orders
over C (i.e., the order in which agents are added to C):
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A convex game is one where the value contributed by an agent to a coalition
never decreases as more agents are added to that coalition:

Definition 2 Profit game (N, v) is convex if v(T u {i}) —v(T) = v(S U {i}) —
v(S), for all ie N, S < T < N\{i}.

Convex games have important properties [I5]: the grand coalition maximizes
social welfare, the Shapley value is in the core, and a core allocation must exist
and is computable in poly-time in the number of agents.

2.2 Prediction-of-Use Games

A prediction-of-use (POU) game is a tuple (N, II, 7). N is a set of agents, where
each 1 € N uses electricity according to a consumption profile in II, a normal
random variable with mean pu; and standard deviation o;, say, in kilowatt-hours
(kWh). Let x; denote i’s realized consumption, x; ~ N (u;,0;). Consumption



profiles are assumed to be common knowledge (we do not address elicitation or
estimation of consumption here, but see below).

A POU tariff has the form 7 = {p,p,p), and is intended to better align
the incentives of the consumer and electricity supplier, whose costs are greatly
influenced by how predictable demands are. Each agent i is asked to predict a
baseline consumption b;, and is charged p for each unit of x;, plus a penalty
that depends on the accuracy of their prediction: p for each unit their realized
x; exceeds the baseline, and p for each unit it falls short:

Wby = 420D (b s )
prxi+p- (b — ) if by > x5

To ensure agents have no incentive to artificially inflate consumption, we
require 0 < p and 0 < p < p [I8]. An agent i should report a baseline that
minimizes her expected payment. VRRJ show that i does this by predicting
b* = p; + 02-(15’1(5%), where @1 is the inverse normal CDF. They also show

that 4’s expected payment under the optimal baseline is y;p + o3 L(p, p) where

_pP

L(p.p) = §o ™ o7 (y)dy.

In order to be more predictable in the aggregate, agents may form a coalition
C, where C reports its aggregate demand and is charged as if it were a sin-
gle agent. C’s aggregate consumption is the sum of the normal random variables
corresponding to the members’ profiles, itself normal with mean p(C) = >, ti
and standard deviation o(C) = /2, o?. This aggregate prediction will gen-
erally have lower variance, thus reducing the total penalty payments made by C
when facing POU tariffs (compared to members acting individually). VRRJ ana-
lyze ex-ante POU games where agents make all decisions and internal payments
are based on expected consumption (realized consumption plays no role). In this
setting, the characteristic value of a coalition C' is v(C) = —u(C)p—0o(C)L(p, p).
They show that, in the ex-ante setting, the POU game is convexE|

2.3 Related Work

In addition to POU games [I8/12], others have proposed the formation of co-
operatives or coalitions among electricity consumers. Rose et al. [I3] develop a
similar mechanism for truthfully eliciting consumer demand. Kota et al. [6] and
Akasiadas & Chalkiadakis [2] propose using coalitions to improve reliability and
shift peak power loads. Perrault et al. [10] focus on the formation of groups of
consumers with multiple profiles to reduce peak loads. None of this work offers
the theoretical guarantees of VRRJ.

Beyond electricity markets, several authors have studied the problem of group
purchasing in an AI context. Lu and Boutilier [7] study a restrictive class of
buyer preferences (unit demand, only the supplier affects utility) and seller price

! Technically, they define the game as a cost game and show that the game is concave,
while we use a profit game, but results from the two perspectives translate directly.



functions (volume discounts), which has strong theoretical guarantees. Similarly,
optimally matching a group of cooperative buyers to sellers has been studied
[1418].

3 Multiple-Profile POU Games

We extend POU games by allowing agents to report multiple profiles, each re-
flecting different behaviors or consumption patterns, and each with an inherent
utility or value reflecting comfort, convenience, flexibility or other factors. This
will allow an agent, when joining or bargaining with a coalition, to trade off
cost—especially the cost of predictability—with her inherent utility. A multiple-
profile POU (MPOU) game is a tuple (N, II,V, 7). Given set of agents N, each
agent i € N has a non-empty set of demand profiles II;, where each profile
7, = {uk, o)y € II; reflects a consumption pattern (as in a POU model). Agent
i’s valuation function V; : II; — R indicates her value or relative preference (in
dollars) for her demand proﬁlesﬂ Admitting multiple profiles allows us to reason
about an agent’s response to the incentives that emerge with POU tariffs and in
coalitional bargaining.

We use the definition of POU tariffs and agent baselines as in POU games
above. Notice that the optimal baseline report for an agent is now defined relative
to the profile they use. As in POU games, agents are motivated to form coalitions
to reduce the relative variance in their predictions. However, for a coalition C to
accurately report its aggregate demand, its members must select and commit to a
specific usage profile. We denote an assignment of profiles to agents as A: N —
X,en ;. Under such an assignment, C’s consumption is normal, with mean
u(C,A) = >..o n(A(i)) and standard deviation o(C,A) = /Do 02(A(1)).
The aggregate value accrued by the coalition (prior to supplier payments) is the
sum of its members’ values: V(C, A) = .~ Vi(A(7)).

Asin VRRJ, we begin by analyzing ex-ante MPOU games, where agents make
decisions and payments before consumption is realized. The characteristic value
v of a coalition C'is the maximum value that coalition can achieve in expectation
under full cooperation, i.e., an optimal profile assignment and baseline report,
namely: v(C) = max4 v(C, A), where

v(C, A) = V(C, A) = u(C, A)p — o(C, A)L(p, p) 3)

Notice that profile selection does not arise in the POU setting. In our MPOU
model, coalition value is non-concave, even if integrality of the assignment vari-
ables is relaxed, because the last term is a negative square root: o(C,A) =
\V 2iec 02(A(2)). We can perform the optimization using a mixed integer pro-
gram by replacing the negative square root with a piecewise linear upper bound,
which requires two binary variables per segment. As in other matching prob-
lems, we can relax the assignment variables: in practice, relaxed solutions that
are very close to integral.

2 Such profiles and values may be explicitly elicited or estimated using past consump-
tion data (see Section @



4 Convexity of MPOU Games

It is natural to ask whether, like POU games, ex-ante MPOU games are convex,
since convexity simplifies the analysis of stability and fairness. We show that
this is the case.

Theorem 1 The ex-ante MPOU game is convex.

Since the ex-ante MPOU game is convex, the Shapley value is in the core,
hence we can compute a core allocation by averaging the payments from any
number of join orders. In our experiments, we approximate the Shapley value
by sampling [4].

5 Incentives in MPOU Games

MPOU games introduce a new coordination problem for coalitions that does not
occur in POU games. In a fully-cooperative MPOU game, a coalition C' agrees on
a joint consumption profile prior to reporting its (aggregate) predicted demand.
Despite this agreement, an agent i € C' may have incentive to use a profile that
differs from the one agreed to. For instance, suppose agent 4 has two profiles, mg
and 71, with V;(m) > V;(m1), and that to maximize the social welfare of C, i
should use 71 (and receive coalitional payment ¢;). By deviating from her agreed
upon profile, ¢ can increase her net utility (from V;(m) + t; to Vi(mo) + t;).

Typically, a penalty should be imposed for such a deviation to ensure that
C’s welfare is maximized. Unfortunately, ¢’s profile cannot be directly observed.
Only her realized consumption x; is observable, and it is related only stochasti-
cally to her underlying behavior (adopted profile). As such, any such transfer or
penalty in the coalitional allocation must depend on x;, showing that an ex-ante
analysis is insufficient for MPOU games (in stark contrast to POU games). Fur-
thermore, since x; is stochastic, it could have arisen from ¢ using either profile
(i.e., we have no direct signal of the i’s chosen profile), which makes the design of
such transfers even more difficult. Finally, the poor choice of a transfer function
may compromise the convexity of the ex-ante game, undermining our ability to
compute core payments.

To address these challenges, we use a separating function D;(z;). For each
agent ¢, D; maps i’s realized consumption to an additional ex-post separating
payment.

Definition 3 D; : R — R is a separating function for ¢ under assignment A if
Eq~a(iy[Di(73)] > By~ [Di(2;)] for any 7 € II; such that m # A(i).

Intuitively, given such a D;, we scale it so that the separating payment is large
enough to prevent an agent from using any profile other than the one she is
assigned, while ensuring its expected value is 0 to preserve the convexity of
the MPOU game. This has the added benefit of not requiring elicitation of exact



profile utilities—we need only an upper bound on the difference in utilities across
the profiles.

When an agent has only two profiles, finding D; is straightforward: we let D;
be the PDF of the assigned profile minus the PDF of the unassigned profile. The
proof for this statement is algebraic, using the fact that N (z; g, 00)N (z; p1, 01)
has a closed form that is proportional to a normal PDF in z. All proofs from
this section are in the appendix.

Theorem 2 Let i be an agent with two profiles w7y and 7 and let A(i) = mg.
Then, w.l.o.g., Di(x;) = N(x4; po,00) — N (x5 u1,01) 18 a separating function
for i under A.

With more than two profiles, this approach does not always work. Instead,
we can use a linear program (LP) to find coefficients of a linear combination
of the profile PDFs. Formally, denote the PDFs of the profiles as N(z;) =
(N (45 o, 00), - o, N (45 py11,—1, )17,)~1) ), their weights as y;, and search over
y; € R for a separating function of the form D;(z;,v;) = yi - Ni(z;). We
use an LP that minimizes the Li-norm of y; subject to Eg, 40 [Di(wi, y:)] >
Epmn[Di(x;,y;)] for all m € IT;, m # A(i). Ideally, we would also like to minimize
the variance of the separating payment, giving agents maximal certainty w.r.t.
this payment; however, this objective is not tractable in an LP (we leave this
question to future work). In our experiments below, we do, however, assess the
variance of the separating payment.

A feasible y; corresponds to a linear combination of vectors whose sum has
only positive entries. We call these the difference vectors of D;. While we cannot
prove that a feasible y; always exists, viewing the problem in terms of difference
vectors suggests why they exist in practice:

Definition 4 Let A(7) be T (w.lo.g.). For each profile
Tk € II; the difference wvector dy = Epmr, [N (x5 po, 00] —
<]E;c~7rk [N(x;,uh 01)], ey By, [N(l’, M| -1 0|Hi\71)]>-

Note that these vectors do not depend on y;. We can restate the LP constraints
using difference vectors:

Theorem 3 Let i be an agent with profiles II; and let A assign a profile to i.
There exists y; € RITi| that makes D;(xi,y;) a separating function if and only if
there is a linear combination of the difference vectors of D;(x;,y;) that has only
positive entries.

Proof. First, we prove the forward direction. Let ¢ be the coefficients of the
linear combination of the difference vectors that has only positive entries, i.e.,
ZkeUL-\ crdy = b where b is element-wise positive. Then, E,, a;)[Di(zi, )] —
Eyon[Di(x;,€)] = edi, = bi_1. Since b is element-wise positive, letting y; = ¢
makes D;(z;,y;) a separating function.

The reverse direction is also straightforward. Suppose D;(z;,y;) is a separat-
ing function. Then, let by_1 = By, a¢)[Di(24, €)] — Egynr[Di(24, )] = yi - di.



Thus, taking y; as the coefficients of the linear combination of difference vectors
equals b, which has only positive entries.

Corollary 1 Let dy be the difference vectors for agent i. If the difference vectors
are linearly independent, a setting of y; exists that makes D;(x;,y;) a separating
function.

Proof. If the difference vectors are linearly independent, there exists a coefficient
vector ¢ that makes Y, 7| ced elementwise positive. We can take y; = c.

We generally expect a random set of vectors to be linearly independent when
their entries are drawn from the reals. We have yet to encounter an instance
where a separating function does not exist in our experiments. It is an open
question as to whether a separating function of this form always exists.

6 Learning Utility Models
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Fig. 2: Translating the valuation
Fig.1: The form of the learned function to pass through the ori-
valuation model. NN (10) denotes gin.
a neural network with 10 hidden
units.

To empirically test the MPOU framework and our separating functions, we
require consumer utility functions. As we know of no data set with such utility
functions, we learn household (agent) utility models from real electricity usage
data from Pecan Street Inc. [11]E| We define our prediction period as 4-7 pm
each day, when electricity usage typically peaks in Austin, Texas, where the
data was collected. We decompose utility into two parts: Vi(“ ) (w, 1) describes
the value an agent i derives from her mean consumption given a vector w of
weather conditions; and Vi(g) (o, 1) represents utility derived from variance in

consumption behavior. Agent #’s utility is V;(w, p, o) = Vi(“) (w, M)V;(U) (o, ).

3 Publicly available at pecanstreet.org.


pecanstreet.org.

Estimating Vi(” ) is difficult, since we lack data for some aspects of the prob-
lem. Thus, we make some simplifying assumptions: (i) consuming 0 kWh yields

value $0; and (ii) Vi(“ ) (w, 1) is concave and increasing. We learn a model for
each of 25 households that have complete data from 2013-15 (about 1100 data
points per household), using select weather conditions w and mean consumption
between 4-7 pm as input, and outputting value (in dollars). We use this valua-
tion function to predict consumption by maximizing an agent’s net utility under
the observed price:

2 (w)

VI ) = =) (= 2 Pw)) " 4 O w) @

(0)

i

constraining z; ' > 0, zl(l) >0,0< zZ@) < 1, zi(?’) (w) = 0 (Figure |1| depicts
the utility model). The term 2:2(3) (w) has no influence on predictions: it can be
viewed as inherent value due to weather, and is used to account for the flexibility
provided by the zi(l) term, which may create valuations where consumption 0

yields negative value (violating our assumptions). To prevent this, we set ZZ-(S) (w)
to ensure the tangent at the predicted consumption for $0.64 (the largest price
in the data set) passes through (0,0). (see Figure [2]). When this tangent crosses

the y-axis above 0, we set 22(3) (w) = 0 and splice in an exponential function of
the form ax® that passes through (0,0) and matches the derivative at the splicing
point.

For training, we use the model to predict consumption by solving the net
utility maximization problem, max,, (V;(w, u) — up), yielding:

X P T, 0

Mw,p) = g~ Ttz (w) ()
2" )" (w)

We represent zi(o),zgl) and 252) in fully-connected single-layer neural net-

works, each with 10 hidden units and ReLU activations, and train the model

with backpropagation. We implement the model in TensorFlow [I] using the

squared error loss function and the Adam optimizer [5]. We use Dropout [16]

with a probability of 0.7 on each hidden unit.

Mean |Std. dev.|Mean [Std. dev.
Model|train |train test test
RMSE |[RMSE |RMSE [RMSE
Valuation| 0.137| 0.0168| 0.148| 0.0194
Unstructured| 0.142] 0.0226| 0.144| 0.0284
Constant| 0.204| 0.0345| 0.205| 0.0411

Table 1: Comparison of model prediction accuracy by root-mean-square error
(RMSE). We divide each household’s consumption amounts by their largest ob-
served consumption.
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Fig.3: Learned value models for three of the 25 households with consumption
mean (kWh) on the z-axis and value ($) on the y-axis. The red line represents
the median weather conditions. The dotted line represents the median day with
90th percentile or higher temperature. The dashed and green lines are the same
for sunshine and humidity, respectively.

We split the data into 80% train and 20% test for each household. Table
compares the prediction accuracy of our model (“valuation”) to (i) an unstruc-
tured neural network, and (ii) the best constant prediction for each household.
The unstructured net learns a mapping from {w, p) to u directly using 10 hidden
units, without an intervening utility modelﬁ The best constant prediction disre-
gards weather and price data, and simply predicts average consumption for that
household. Table [I] shows that the valuation model overfits somewhat, but that
predictive accuracy is on par with the unstructured model. This shows that our
constraints on the form of the valuation function are not unduly restrictive and
validates the value predictions produced by these learned models. However, we
believe these value functions significantly underestimate value because we lack
consumption observations when the price is higher than $0.64.

Figure[3|shows the learned valuation functions for three of the 25 households,
and the rest are shown in the appendix. Each line represents a household’s re-
sponse to different weather conditions. While temperature is the most significant
predictor of power usage, different households appear to exhibit sensitivity to
different factors (e.g., the household on the right, is highly sensitive to humidity).

6.1 Modeling Unpredictable Consumption

Unfortunately, we do not have access to electricity usage data where consumers
are charged differently depending on the accuracy of their predictions. Our model
of the value of unpredictable consumption is thus speculative, but uses the Pecan
Street data as a starting point. We assume that each household chooses the o
that maximizes its utility (since they are not being charged for o), and that it
has an optimal fraction §; of o/u that does not depend on other conditions. We
estimate §; from the data by treating each data point as having an observed
o equal to the absolute error in consumption prediction made by the learned
valuation model. We assume no value is gained by increasing ¢ above the optimal

4 Our other implementation choices are the same as the valuation model, except we
use Dropout of 0.5.



ratio, and use an exponential to represent the loss in value when ¢ is reduced,

N (6)

(3

where +; is a constant representing i’s cost for being predictable. A higher ~y;
means that consumer ¢ values variance more highly. In our experiments, we
sample ; from the uniform distribution over the interval [0.1, 2].

7 Experiments

The questions we study experimentally are: (i) how important is consumer co-
ordination under POU tariffs; (ii) what is the overall social welfare gain from
using an MPOU model vs. a flat tariff; (iii) how important is an agent’s choice
of reported profiles; and (iv) what are the variances of the payments introduced
by the separating functions. We first describe the experimental setup: how we
select agents, profiles and tariffs. For each trial, we select weather conditions w
uniformly at random from the Pecan Street data. To generate agents, we sample
from our 25 learned household utility models, using w as input and adding a
small amount of zero mean noise to the model parameters. We sample ; from
the uniform distribution [0.1, 2] for each agent i. Each data point is an average
of 100 trials with 5000 agents, unless otherwise noted. One of the goals of our
experiments is to study the consequences of different choices of reported profile.
To do this, we vary the way profiles are generated. Each agent has four profiles:
a base profile (predicted to be optimal under a flat rate tariff with rate equal to
the fixed-rate p of the POU tariff), and three others reflecting reduced consump-
tion mean or variance. The first reduces the base profile mean by the amount
required to reduce value by 4%, which we call the profile spacing. The second
reduces variance to reduce value by u%. The third reduces both. We vary u
throughout the experiments.

To generate tariffs, we vary the amount of emphasis each puts on accurate
predictions vs. the amount consumed. We let the predictivity emphasis (PE) of
a tariff w.r.t. a group of agents be the fraction of the expected total cost paid
for prediction penalties when each uses her base profile. In practice, PE should
be set to match the properties of the reserve power generation capacity that is
available: a higher PE corresponds to more expensive reserves. A tariff is revenue-
equivalent to another with respect to a specific set of profiles if the revenue of
the two is the same for that set. All of our tariffs will be revenue-equivalent
with respect to the set of base profiles. To find a revenue-equivalent tariff with a
certain PE, we use a numerical solver to find a tariff of the form (p, r, r) with the
appropriate total cost. Intuitively, a higher PE should result in larger benefits
from POU tariffs, and we find that to be the case in our experiments.

To generate Shapley values, we sampled a number of join orders equal to
the logarithm of the number of agents in the instance. Shapley values were very
close to linear in the standard deviation of the assigned profile. With 5000 agents
and 100 trials, the average Shapley payment for prediction was $0.41 per kWh of



uncertainty across trials with PE 10%, and $0.82 per kWh with PE 20% %] Within
a single trial, the standard deviation of this ratio was less than 1.0 x 10~ on
average, suggesting that once Shapley payments for a small number of agents are
calculated, those for the remainder can be approximated very accurately. There

may also be an accurate closed-form approximation for the Shapley payment in
MPOU games.
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Fig. 4: Profile spacing vs. % of social welfare of fixed-rate tariff for uncoordinated
POU setting and % of agents that change profile. 5000 agents, 100 trials.

7.1 Results

We first address the question of how important it is for agents to coordinate their
consumption under a POU tariff. We define the uncoordinated POU setting as
the scenario where agents are subject to a POU tariff, but do not coordinate
their consumption behavior, i.e., each agent uses the profile that individually
maximizes her net utility relative to that POU tariff. Figure ] shows the social
welfare derived by agents in the uncoordinated POU setting as a percentage of
their social welfare under a revenue-equivalent fixed-rate tariff. We see that the
average social welfare achieved in the uncoordinated POU setting is less than
that of the fixed rate setting for all profile spacings. Individual agents react to
the POU tariff by increasing their predictivity, and thus decreasing their realized
value, but they do not account for the predictivity discount that results from
being part of a coalition. As profile spacing increases, more agents shift away
from their base profile and social welfare decreases, reaching 70% when spacing
is 25%. These results underscore the need for a way for agents to coordinate
their profile choices under POU tariffs and highlight one of the main challenges
of successfully implementing a POU tariff in practice.

5 This and other tariffs in this section have 0.2 < p=p<15
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Fig.5: Profile spacing vs. social welfare % gain from fixed-rate tariff and % of
agents that change profile. 5000 agents, 100 trials.

Next, we study the social welfare gain that can be achieved by a POU tar-
iff when agents coordinate optimally under the MPOU framework. Figure [5
shows the effect of profile spacing (u) on the welfare gained by switching from
a fixed-rate tariff to a revenue-equivalent POU tariffﬁ Overall welfare gains are
moderate, around 3.13% for PE of 10% and 4.4-4.9% for PE of 20%. A higher
PE results in a larger social welfare gain because agents only benefit from coop-
erating when trading off predictivity for inherent utility. Profile spacing appears
to have limited impact on social welfare gain, suggesting that most of the gain
is achieved by the effective reduction in fixed-rate price under a POU tariff. We
note that these experiments are the first to study the resulting social welfare
gain from a POU tariff, as previous papers focused on non-welfare aspects.

Figure 5| appears to indicate that personalizing profile spacing based on each
agent’s value for predictivity would increase social welfare further. We can see
this because increasing profile spacing increases welfare up to a spacing of 15%
for both PE levels, but the number of agents that shift profiles decreases as
spacing is increased (shown on the right-side axis). Thus, we hypothesize that
welfare could be further increased if agents with higher + spaced their profiles
farther apart than those with lower.

Next, we address the question of uncertainty introduced by separating pay-
ments. Recall that while separating payments have expectation zero, they in-
troduce additional uncertainty to agent payments. We find that the amount of
uncertainty introduced is, in fact, minimal, and decreases with instance size and
increased PE. The standard deviation of the separating payment is on average
15-20% of predictivity payment for PE of 10% and 7.5-10% for PE of 20%, and
increases slightly as profile spacing increases. Note that only agents that actu-
ally require a separating function are taken into account, around 1-2% of all

5 Each instance took around 3 minutes on a single thread of 2.6 Ghz Intel i7, 8 GB
RAM.
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Fig.6: Comparison of the standard deviation of the separating function pay-
ment to the ex-ante payment for prediction accuracy. Bars show one standard
deviation. 5000 agents, 100 trials.

agents for PE of 10% and 5-10% for PE of 20%, on average. More agents require
separating payments as PE increases, but the uncertainty introduced by each
decreases. Note that these are uncertainties for a single instance of the game,
and if the game is played repeatedly (e.g., every day), the aggregate uncertainty
will decrease as the independent random variables are added.

Figure [7] shows the same uncertainty ratio for a single large instance versus
the predictivity flexibility () of each agent. This instance has PE of 20%, 100,000
agents, profile spacing of 15% and takes 90 min. to solve. The ratio is shown
for the 4876 agents that require separating functions. The magnitude of the
introduced uncertainty is smaller in this larger instance with an average of 2.07%
(and not exceeding 3% for any agent). In addition, predictivity flexibility has
little affect on the introduced uncertainty: the linear least-squares fit (red line)
has slope of less than 10~

8 Conclusion

We have introduced multiple-profile POU (MPOU) games, a framework for co-
ordinating agent behavior under POU tariffs. MPOU games allow agents to
express their consumption utility functions, while maintaining convexity of the
basic POU model. MPOU games introduce a new class of incentive problems due
to agent actions being partially observable: we introduce separating payments to
restore proper incentives. Our experimental utility models are learned from his-
torical electricity usage data in a novel way. Our experiments show that, while
social welfare gained by introducing the MPOU model (w.r.t. a fixed-rate tariff)
appear moderate, the gains relative to a POU tariff are substantial. The gains
over a fixed-rate tariff may be worthwhile in a large system and may be further
enhanced by more sophisticated agent utility and behavior profile models. They
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depend both on the predictivity emphasis (PE) of reserve generation and on
consumers’ value for consuming unpredictably, which are both areas where more
real-world data is needed. We find that the uncertainty introduced by separat-
ing payments decreases as instance size increases, and decreases in aggregate as
more iterations of the game are played. Increased PE increases the number of
agents that need separating functions, but the uncertainty introduced decreases.

Interesting future directions for POU/MPOU games remain. Greater access
to household utility data, especially for variance of consumption, and data about
the PE of generation mixes would allow us to more precisely test social welfare
gain. In addition, it would be desirable to allow agents to make predictions
contingent on intermediate predictions (e.g., of weather) thus reducing the need
for agents to make accurate weather forecasts. While our discussion of POU and
MPOU games has focused on electricity markets, we believe the approach may
be more widely applicable in other cases where agents are contending with a
scarce resource, e.g., cloud computing.
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10 Proofs

To prove convexity, we begin with a technical lemma.

Lemma 1. Let (N,II,V,7) be an MPOU game. Leti € N and S < T < N\{i}
and j € T\S.

v(Sufi}) —u(S) < v(S v i j}) —v(Su{i}) (7)

Proof. We let A*(S) denote the assignment of profiles that maximizes the social
welfare of S. In the case where there are multiple social welfare-maximizing
configurations of S, we use the one with highest aggregate variance. We observe
that v(T, A*(S)) < v(T) because A*(S) imposes a constraint on the behavior of
S. For technical reasons, we break the proof into two cases based on whether it
is more beneficial for i) ¢ to join coalition S when S is configured to maximize
v(Su{i}) orii) ¢ to join coalition S U {j} when Su {j} is configured to maximize
v(S U {7})-
Case 1. v(S U {i}) —v(S,A*(Su {i})) > v(S U {i,j},A*(Su {j}) —v(Su{j})
This inequality implies that o(S U {5}, A*(S U {j}) < o(S, A*(S v {i})). Since
j contributes a non-negative amount of variance, o(S, A*(S U {j})) < o(S U
{7}, A*(S U {j})), and likewise, o(S, A*(S U {i})) < o(S v {i}, A*(S U {i})).
Applying these inequalities yields o (S, A*(S U {j})) < (S v {i}, A*(S U {i})),
implying:
u(S U {5}) —u(S, A% (S u {i})) <
v(S v {i, g}, A*(S u {i}) —v(S U {i}) (8)
Then, applying the inequalities v(S, A*(Su{j})) < v(S) and v(Su{i,j}, A*(SuU
{i})) <v(S u {i,7}), and rearranging terms:
v(S ufi}) —v(S) <wv(S v {ij}) —v(Su{i}) (9)
which is a stronger version of the lemma.
Case 2. v(S U {i}) — o(S, A%(S U {i})) < v(S U {i, 7}, A*(S U {7}) — (S U {5)})
Applying the inequality v(S, A*(S U {i})) < v(S) on the left side yields:
v(S U {i}) —v(S) < w(Su{i,j}, A(S U {j}) —v(S v {5}) (10)

Applying on the right side v(S U {7, j}, A*(S U {7})) < v(S U {i,j}) yields the
lemma:

v(Sufi}) —u(S) < v(S v {ij}) —v(S v {i}) (11)



Theorem 1 The ex-ante MPOU game is convex.

Proof. If S =T, then v(S U {i}) — v(S) = v(T v {i}) — v(T) since the welfare-
maximizing configurations of S and T are the same. If S < T, we repeatedly
apply Lemma [I| to “grow” S one agent a time, creating a series of inequalities,
until we relate .S and T'.

Theorem 2 Let i be an agent with two profiles my and m; and let A(i) = mg.
Then, w.l.o.g., D;(z;) = N(zi; po,00) — N(zi;p1,01) s a separating function
for i under A.

Proof. We will show that the minimum of Egzr(ug,00) [N (@ 1o,00) —
N (@5 p1,01)] = Eoon (s ,00) [NV (%5 10, 00) — N (25 1, 01)] occurs when piy = g
and 01 = 0g and that the value of the expression at that point is positive.

We make use of the fact that N (z; 1, 01)N (x5 p2, 02) is a function propor-
tional to the PDF of a normal distribution. Specifically,

N (; po, 00)N (5 p1,01) =
—2 —2 2 2
+o0, U1 ooy
N s H1,7 /08 2VN ;00 Ho 1 , 12
Hos % o v 052+0f2 Ug-i-a'f ( )

Then, by expanding terms and applying Equation

E oo N (p10,00) [N (25 110, 00) — N (5 11, 01) ]
Eo (1 o0) IN (25 10, 00) — N (25 1, 01)]

1 1
= -2 i o, A/ 028 2 e —— 13
2oo/m N(ﬂl o,1/ 0§ +01) + 201/ (13)

We then minimize with respect to p; and ;. Since the middle term is the only
one that contains p1, we can minimize it separately:

B 2 exp (_ (1o — Ml)Z) (14)

2m (03 + 0%) 2(of + o)

Since the argument of the exponent is always non-positive, it is maximized when
it is zero, i.e., p1 = po. Thus, we can make this substitution and rewrite the
overall expression:

1 2 1
- +
2004/T V27 (0d + 0?) 2014/T

Taking the derivative with respect to o7 and setting it to zero yields two real
roots of og = +o1. The second derivative at these points is positive. Thus, it is
a minimum.

The value of the original expression at this point is 0 and positive otherwise.

(15)



Fig.8: Learned value models for the 25 households with consumption mean
(kWh) on the x-axis and value ($) on the y-axis. The red line represents the
median weather conditions. The dotted line represents the median day with
90th percentile or higher temperature. The dashed and green lines are the same
for sunshine and humidity, respectively.
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