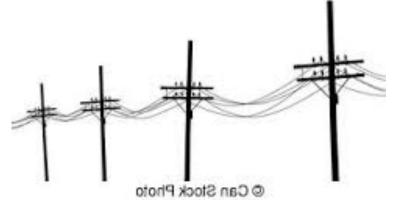

Multiple-Profile Prediction-of-Use Games


Andrew Perrault and Craig Boutilier {perrault, cebly}@cs.toronto.edu

Electricity Market

Supplier buys electricity in advance, but can also buy at the last minute for a higher price

Generator

Misalignment of incentives: Consumer's cost does not depend on predictability, but supplier's cost does

Prediction-of-Use (POU) Tariffs

- Each consumer makes a prediction ahead of time
 - They are charged based on:
 - How much they consume
 - How accurate their prediction was
- Consumers can form groups and be treated as one large consumer
 - But they can only do this if they can agree on how to split the costs

Contributions

- Extend POU games to support multiple profiles
 - Extension remains convex
 - Creates new enforcement problems addressed by separating functions
- Experimentally validate our approach using learned utility models

Intro to Cooperative Games

Cooperative Games

- Set of agents N
- Can form *coalitions*
 - Characteristic value function $v: 2^N \to \mathbb{R}$ represents value each coalition can achieve
- Agents can defect to other coalitions, but are forced to cooperate within coalition
 - Coalition can enforce contracts
- Definition (superadditivity): $v(S \cup T) \ge v(S) + v(T)$
 - Grand coalition of all agents maximizes utility

Benefit Sharing

- Challenge: how to share benefits among its members?
- Def. (stability): no agent has incentive to defect to another coalition
- Two major approaches:
 - Core allocation: strong stability guarantees, but hard computation
 - Shapley value: fairness, "easy" to approximate, no stability guarantee
- If game is *convex* (has a supermodular characteristic function):
 - Shapley value (and some approximations) is a core allocation (Shapley, 1971)
 - Can cheaply get fairness of Shapley value and stability of core simultaneously

Prediction-of-Use Games

Robu et al. (2017) POU Model

- Each household has a distribution over consumption in next time period—a profile
- Households can form coalitions
 - Coalition's profile is sum of members' profiles
- Each coalition predicts a baseline $b \in \mathbb{R}$

Household n_1

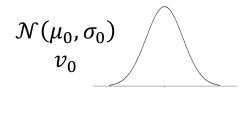
 $\mathcal{N}(\mu_1, \sigma_1)$

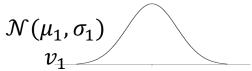
Valentin Robu, Meritxell Vinyals, Alex Rogers, and Nicholas Jennings. Efficient Buyer Groups with Prediction-of-Use Electricity Tariffs. *IEEE Transactions on Smart Grid* (2017).

Robu et al. (2017) POU Model

- Three-parameter POU tariff:
 - Charge p for realized consumption
 - Charge \overline{p} for each unit over baseline b
 - Charge p for each unit under baseline b
- Closed-form for optimal b
- Characteristic function is total cost in expectation
- Characteristic function is convex

Limitations of POU Games


- The only decision agents have in POU games is what profile to declare
- The choice of profile is made before the game starts
- Agent have utility functions—choosing the best profile is an optimization
- Optimal choice depends on what other agents choose


Multiple-Profile Prediction-of-Use Games

Multiple-Profile POU (MPOU) Games

- Each profile has a value
- Each household is assigned a profile by the coalition
- Characteristic function (value of a coalition): sum of assigned profile values minus expected costs, under best possible assignment

Profile

Household n_1

$$\mathcal{N}(\mu_2, \sigma_2)$$
 v_2

$$\mathcal{N}(\mu_3, \sigma_3)$$
 v_3

Cost Sharing in MPOU Games

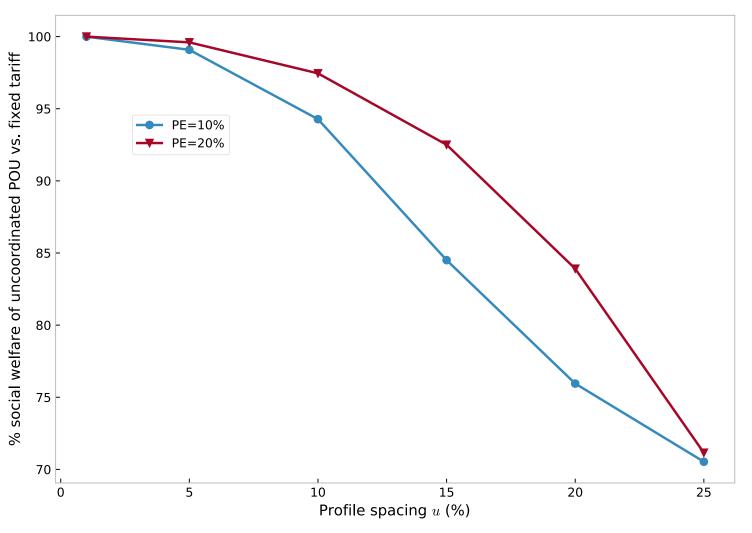
- Theorem: MPOU games are convex
- Additional complexity does not interfere with convexity
- However, having multiple profiles creates a new issue

Enforceability

- Coalition assigns a profile to each agent
- Actions are only partially observable in MPOU
 - Coalition knows each agent's profiles
 - Selected profile only known to agent
 - Coalition observes realized consumption

Separating Functions (SFs)

- A separating function maps realized consumption to a payment
 - From coalition to agent
 - To incentivize use of the assigned profile
- Definition: D(x) is a separating function under assignment A of agents to profiles if:
 - $\mathbb{E}_{A(i)}(D(x)) + v(A(i)) > \mathbb{E}_{\overline{A}(i)}(D(x)) + v(\overline{A}(i))$ (incentive)
 - $\mathbb{E}_{A(i)}(D(x)) = 0$ (zero-expectation)


Empirical Results

Goal of Experiments

- Measure social welfare difference between POU, MPOU and fixedrate tariff
 - Use agent utility functions learned from pecanstreet.org data


Social Welfare: POU vs. Fixed-Rate

 POU suffers a large SW loss vs. fixed due to lack of coordination

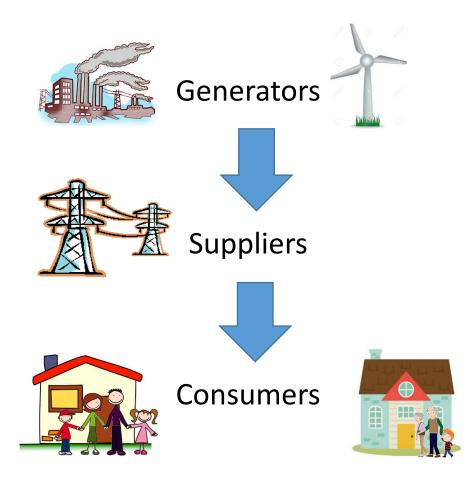
MPOU vs. Fixed-Rate

 MPOU shows a modest SW gain over fixed

Contributions

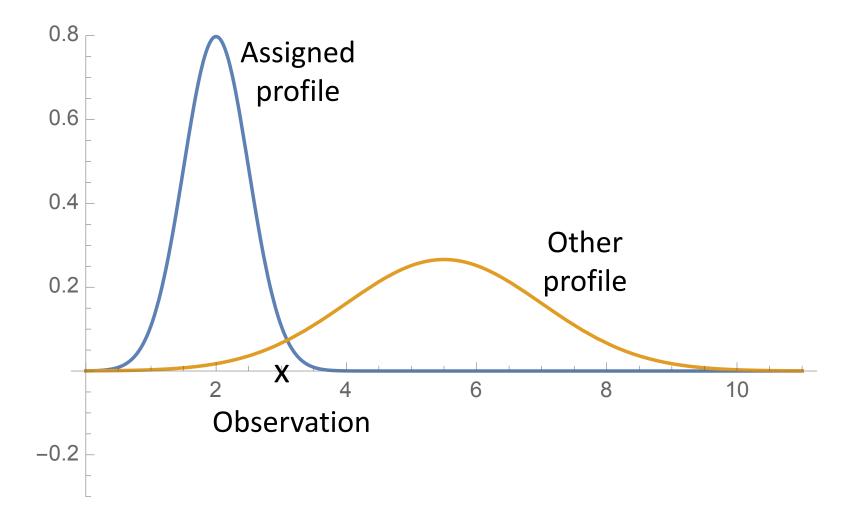
- Extend POU games to support multiple profiles
 - Extension remains convex
 - Creates new enforcement problems addressed by separating functions
- Experimentally validate our approach using learned utility models
 - Social welfare: POU < fixed-rate < MPOU

Future Work


- POU games:
 - Manipulation
 - Correlated prediction errors
- Separating functions:
 - General applicability to principal-agent problems

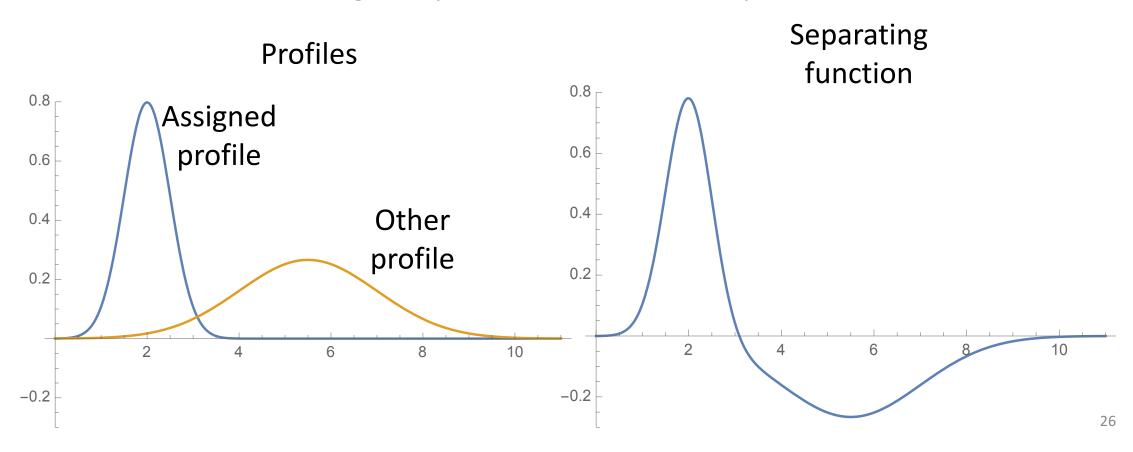
Thank You

• Poster #1938


Electricity Markets

- Electricity consumption is hard to predict for suppliers
- Predictable consumers are cheaper to serve
- Residential consumers face a fixedrate tariff
 - They are not incentivized to be predictable

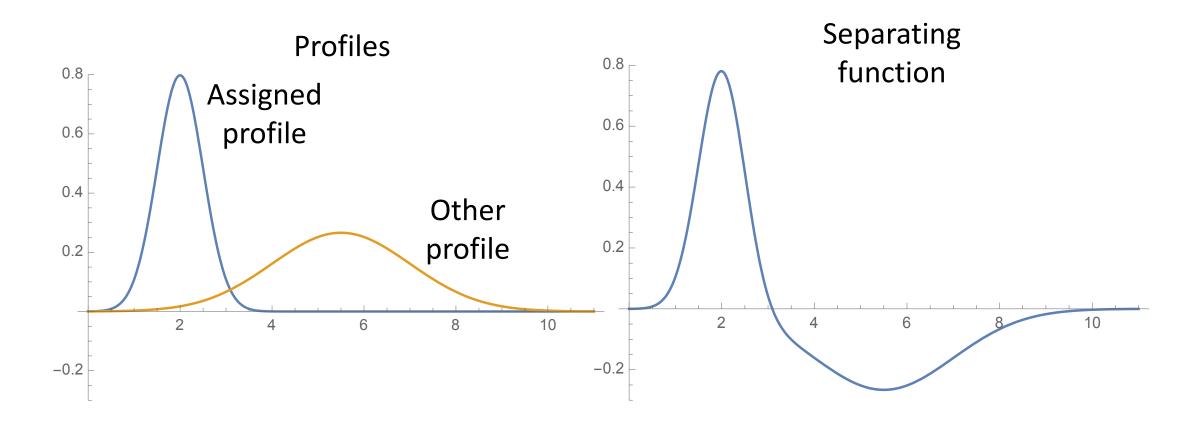
SF Calculation, Two-Profile Example



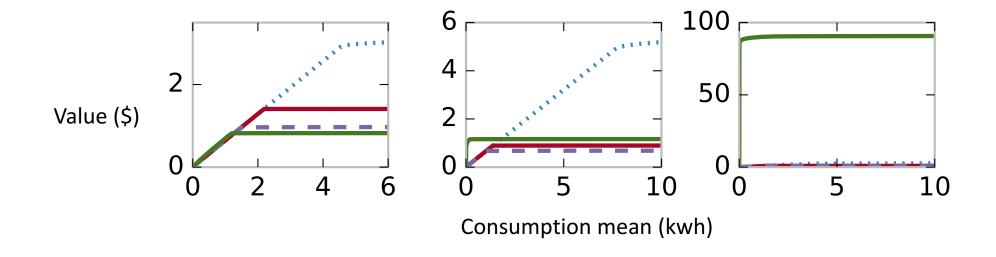
SF Calculation, Two-Profile Example

• Theorem: separating function for two-profiles:

PDF(assigned profile) – PDF(other profile)


SF Calculation, Arbitrary Number of Profiles

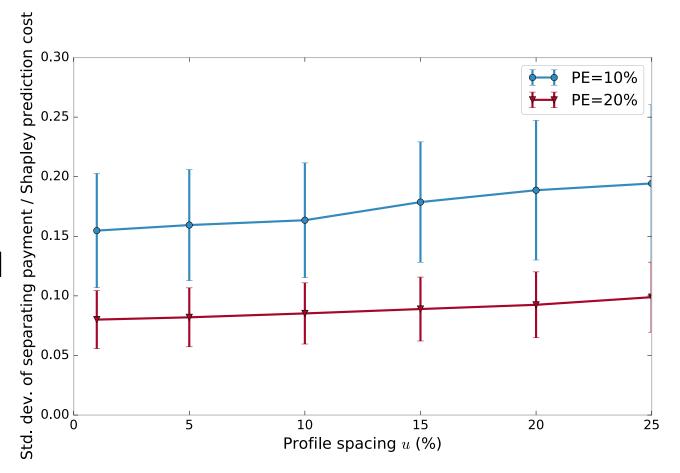
- No closed form that we know of
- Can compute using a linear program
- We suspect they always exist in practice


Addressing the Problems of Weak SFs

- Key observation: weak separating condition maintained under affine transformations
 - A weak separating function can have arbitrary power through scaling
 - Can make $\mathbb{E}_{A(i)}(D(x)) = 0$ through translation. Thus, payments not affected

SFs Introduce Variance

Utility Models


Free for academic use at pecanstreet.org

Instance Generation

- Generate agents by sampling utility functions
- Create revenue-equivalent fixed-rate and POU tariffs
 - *Predictivity emphasis (PE)*: parameter for how much agents are penalized for prediction errors relative to fixed-cost
- Generate profiles for each agent
 - Profile spacing: measure of how dissimilar generated profiles are

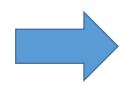
Variance Introduced by SFs

- Record average variance of SF as a fraction of Shapley payment
 - Only for agents that require SFs (1-10%) of total
- Substantial variance introduced
- If time periods are independent, variance decreases in aggregate

Core Allocations

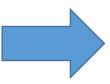
- Let t(i) be the payment to agent i
- Budget balance: distributes all benefits: $\sum_{i \in N} t(i) = v(N)$
- Stability: no defections possible: $\forall S \subset N, \sum_{i \in S} t(i) \geq v(S)$
- Very satisfying, but, in general:
 - May not exist
 - May be hard to compute

Shapley Value

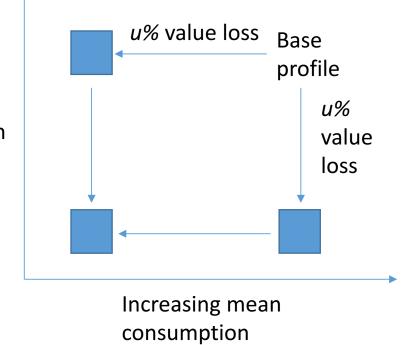

- Intuition: agent's average contribution to coalition value
- Guarantees "fairness"
- Budget-balanced, but not guaranteed to be stable
- Easy to approximate
- If a

Scalability

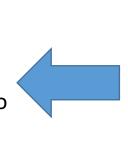
- 100k agents with 4 profiles each takes 90 minutes
- Largest bottleneck is Shapley value computation: $n \log n$ linear programs (LPs) where n is number of agents
 - Each LP has nk variables where k is number of profiles
 - Need to calculate coalition values n times for each sample
 - Need $\log n$ samples
- Separating function LPs have k^2 variables each


Instance Generation

1. Generate agent population by sampling utility function and adding noise


2. Calculate optimal profile for each agent under fixed rate tariff with rate p_{fixed}

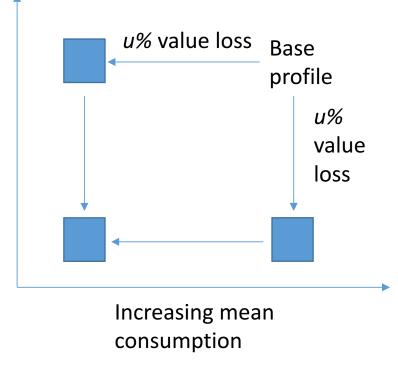
(using generated profiles)



3. Calculate revenue equivalent POU tariff $< p, p^+, p^- >$ with desired predictivity emphasis *PE* (portion of revenue that is based on predictivity)

Increasing consumption variance

5. Create additional profiles according to profile spacing *u*



4. Calculate optimal profile under POU tariff, ignoring variance costs (base profile)

Profile Spacing

- Base profile maximizes utility ignore variance → only need to consider profiles that reduce variance
- But we don't know what spacing will maximize social welfare (SW)

Increasing consumption variance

