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Abstract. Prediction-of-use (POU) games [14] address the mismatch
between energy supplier costs and the incentives imposed on consumers
by fixed-rate electricity tariffs. However, the framework does not address
how consumers should coordinate to maximize social welfare. To ad-
dress this, we develop multiple-profile prediction-of-use (MPOU) games,
an extension of POU games in which agents report multiple acceptable
electricity use profiles. We show that MPOU games share many attrac-
tive properties with POU games attractive (e.g., convexity). However,
MPOU games introduce new incentive issues that limit our ability to
exploit convexity effectively, a problem we analyze and resolve. We vali-
date our approach with experimental results using utility models learned
from real electricity use data.

1 Introduction

Prediction-of-use games were developed by Robu et al. [14], hereafter RVRJ, to
address the mismatch between the cost structure of energy suppliers and the
incentive structure induced by traditional fixed-rate tariffs faced by consumers.
In most countries, energy suppliers face a two-stage market, where they pur-
chase energy at lower rates in anticipation of future consumer demand and then
reconcile supply and demand exactly at a higher rate at the time of realization
through a balancing market [20]. The cost to energy suppliers is thus highly
dependent on their ability to predict future consumption. Since consumers typ-
ically have little incentive to consume predictably, suppliers generally use past
behavior to predict consumption. The uncertainty in these predictions incurs
some additional cost for suppliers.

One way to improve supplier predictions is to incentivize consumers to re-
port predictions of their own consumption, thus offering access to their private
information about the future. RVRJ analyze mechanisms where flat tariffs are
replaced with prediction-of-use (POU) tariffs, in which consumers make a pay-
ment based on both their actual consumption and the accuracy of their predic-
tion. Similar tariffs have, in fact, been deployed in practice [3]. RVRJ analyze
the cooperative game induced by POU tariffs, in which consumers form buying
coalitions that reduce (aggregate) consumption uncertainty, and find that, under
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normally-distributed prediction error, the game is convex. Convexity is a power-
ful property that significantly reduces the complexity of important problems in
cooperative games, both analytically and computationally.

While attractive, the POU model has a significant shortcoming. Though the
POU model could be adapted to model how consumers change their consump-
tion in reaction to price changes, consumers cannot coordinate their consumption
choices. A consumer’s optimal consumption profile—a random variable repre-
senting the individual’s possible behaviors or patterns of energy consumption—
depends on the profiles others use. In POU games, the only consumer choice is
what coalition to join—a consumer’s demand is represented by a single predic-
tion, reflecting just one selected (or average) consumption profile for each indi-
vidual. In essence, consumers predict their behavior without knowing anything
about others in the game. While the POU model can offer social welfare gains
when the profiles are selected optimally, we show they can result in significant
welfare loss when profile selection is uncoordinated.

We introduce multiple-profile POU (MPOU) games, which extend POU games
to admit multiple consumer profiles. This allows consumers to coordinate the
behaviors that change their predictions, facilitating the full realization of the
benefits of the POU model. We show that MPOU games have many of the same
properties that make the POU model tractable, e.g, convexity, which makes the
stable distribution of the benefits of cooperation easy to compute. In addition,
we show that MPOU games are individually rational and that consumer utility
is monotone increasing as the number of truthfully-reported profiles increases.
However, MPOU games also present a new challenge in coalitional allocation:
since one can only observe an agent’s (stochastic) consumption—not their un-
derlying behavior—determining stabilizing payments for coalitional coordination
requires novel techniques. We introduce separating functions, which incentivize
agents to take a specific action in settings where actions are only partially ob-
servable.

We experimentally validate our techniques, using household utility functions
that we learn (via structured prediction) from publicly-available electricity use
data. We find that the MPOU model provides a gain of 3-5% over a fixed-
rate tariff across several test scenarios, while a POU tariff without consumer
coordination can result in losses of up to 30%. These experiments represent the
first end-to-end study of the welfare consequences of POU tariffs.

The remainder of the paper is organized as follows. Section 2 reviews coop-
erative games, the POU model and related work. Section 3 introduces MPOU
games and Sec. 4 proves their convexity. Section 5 outlines the new class of
incentive problems that arises when the mechanism designer cannot (directly)
observe an agent’s selected profile, and develops a general solution to that prob-
lem. Section 6 briefly discusses manipulation. In Sec. 7, we describe an approach
for learning consumer utility models from real-world electricity usage data, and
experimentally validate the value of MPOU games using these learned models
in Sec. 8.



2 Background

We begin with basic background on cooperative games, POU games, and their
related work.

2.1 Cooperative Games

A prediction-of-use game is an instance of a cooperative game with transferrable
utility [11], where agents can make arbitrary monetary payments to each other.
In a cooperative game, the set N of agents divides into a set of coalitions, i.e., a
disjoint partitioning of the agents. In a profit game, the characteristic function
v : 2N Ñ R represents the value that any subset of agents can achieve by
cooperating. A profit game is a tuple xN, vy.

The agents in a coalition C Ď N distribute the benefits of cooperation how-
ever they choose. An allocation is a payment function t : N Ñ R that assigns
some payment (which may be negative) to each agent. An allocation is efficient if
it distributes the entire value, i.e.,

ř

iPN tpiq “ vpNq. Agents receive no “individ-
ual” value under this model—all value is redistributed via coalitional payments.
In practice, the individual value accrued by an agent may be deducted from its
payment in order to reduce total transfers.

A major goal of cooperative game theory is to find allocations that prevent
agents from defecting from their coalition, thus achieving stability. An allocation
that stabilizes the grand coalition of all agents is in the core:

Definition 1. Allocation t is in the core of profit game xN, vy if it is efficient
and

ř

iPS tpiq ě vpSq for all S Ď N .

The core is a strong stability concept, so much so that certain profit games
have an empty core (i.e., there are no core allocations). Another central solution
concept is the Shapley value sCpiq of an agent i in coalition C Ď N , which
emphasizes fairness and always exists. It values each agent according to the
marginal value they contribute to the coalition when averaged over all join orders
(i.e., the order in which agents are added to C):

sCpiq “
ÿ

SĎCztiu

|S|!p|C| ´ |S| ´ 1q!

|N |!
pvpS Y tiuq ´ vpSqq (1)

A convex game is one where the value contributed by an agent to a coalition
never decreases as more agents are added to that coalition:

Definition 2. Profit game xN, vy is convex if vpT Ytiuq´ vpT q ě vpSYtiuq´
vpSq, for all i P N , S Ď T Ď Nztiu.

Convex games have several important properties [17]. First, the grand coalition
maximizes social welfare. Second, the Shapley value is in the core. Finally, a core
allocation must exist and is computable in polynomial time in the number of
agents.



2.2 Prediction-of-Use Games

A prediction-of-use (POU) game is a tuple xN,Π, τy, where N is a set of agents,
Π is a a set of consumption profiles, and τ is a POU tariff. Each i P N uses
electricity according to a consumption profile in Π, a normal random variable
with mean µi and standard deviation σi, say, in kilowatt-hours (kWh). Let xi de-
note i’s realized consumption, xi „ N pµi, σiq. Agents are assumed to truthfully
report their profiles to the coalition. We do not address elicitation or estimation
of consumption here, but see below.

A POU tariff has the form τ “ xp, p, p̄y, and is intended to better align
the incentives of the consumer and electricity supplier, whose costs are greatly
influenced by how predictable demands are. Each agent i is asked to predict a
baseline consumption bi, and is charged p for each unit of xi, plus a penalty that
depends on the accuracy of their prediction: p̄ for each unit their realized xi
exceeds the baseline, and p for each unit it falls short:

ψpxi, bi, τq “

#

pj ¨ xi ` p̄ ¨ pxi ´ biq if bi ď xi

pj ¨ xi ` p ¨ pbi ´ xiq if bi ą xi
(2)

To ensure agents have no incentive to artificially inflate consumption, we
require 0 ď p̄ and 0 ď p ď p [14]. An agent i should report a baseline that
minimizes her expected payment. RVRJ show that i does this by predicting
b˚ “ µi ` σiΦ

´1p
p̄
p̄`p q, where Φ´1 is the inverse normal CDF. They also show

that i’s expected payment under the optimal baseline is µip ` σiLpp, p̄q where

Lpp, p̄q “
ş

p̄
p̄`p

0 Φ´1pyqdy.
To be more predictable in aggregate, agents may form a coalition C, where

C reports its aggregate demand and is charged as if it were a single agent. C’s
aggregate consumption is the sum of the normal random variables corresponding
to the members’ profiles, itself normal with mean µpCq “

ř

iPC µi and std. dev.

σpCq “
a

ř

iPC σ
2
i . This aggregate prediction generally has lower variance w.r.t.

the mean, thus reducing total penalty payments facing C under POU tariffs
(compared to members acting individually).

RVRJ analyze ex-ante POU games. In the ex-ante game, all agent decisions,
as well as any internal transfers, or payments, are based on on expected consump-
tion (realized consumption plays no role). This approach is justified when agents
are risk-neutral, expected-utility maximizers and coalitions form at the time of
consumption prediction, not at the time of consumption. The characteristic value
of coalition C is

vpCq “ ´µpCqp´ σpCqLpp, p̄q (3)

and they show that the ex-ante POU game is convex.1

1 Technically, they define the game as a cost game and show that the game is concave,
while we use a profit game, but results from the two perspectives translate directly.



2.3 Related Work

POU games are closely related to newsvendor games [10], where a supplier must
purchase inventory in advance of demand and faces a penalty for oversupply
(storage costs) and undersupply (lost profit). Unlike POU games, the players
are the suppliers, the demand distribution is known, and the primary object of
study is the value that suppliers can gain by pooling their inventory.

In addition to POU games, others have proposed the formation of coopera-
tives or coalitions among electricity consumers. Rose et al. [15] develop a similar
mechanism for truthfully eliciting consumer demand. Kota et al. [7] and Akasi-
adas & Chalkiadakis [2] propose using coalitions to improve reliability and shift
peak power loads. Perrault et al. [12] focus on the formation of groups of con-
sumers with multiple profiles to reduce peak loads. None of this work offers the
theoretical guarantees of RVRJ.

Beyond electricity markets, several authors have studied the problem of group
purchasing in an AI context. Lu and Boutilier [8] study a restrictive class of
buyer preferences (unit demand, only the supplier affects utility) and seller price
functions (volume discounts), which has strong theoretical guarantees. Similarly,
optimally matching a group of cooperative buyers to sellers has been studied
[16,9].

3 Multiple-Profile POU Games

We extend POU games by allowing agents to report multiple profiles, each re-
flecting different behaviors or consumption patterns, and each with an inherent
utility or value reflecting comfort, convenience, flexibility or other factors. These
profiles correspond to different discrete choices the consumer makes, e.g., what
temperature to set the air conditioner at or when to do laundry or dishes. This
will allow an agent, when joining or bargaining with a coalition, to trade off
cost—especially the cost of predictability—with her inherent utility. A multiple-
profile POU (MPOU) game is a tuple xN, tΠiu, V, τy. Given set of agents N ,
each agent i P N has a non-empty set of demand profiles Πi, where each profile
πi,k “ xµi,k, σi,ky P Πi reflects a consumption pattern (as in a POU model).
Agent i’s valuation function Vi : Πi Ñ R indicates her value or relative pref-
erence (in dollars) for her demand profiles.2 Admitting multiple profiles allows
us to reason about an agent’s response to the incentives that emerge with POU
tariffs and in coalitional bargaining. Finally, τ is a POU tariff. We use the same
definition of POU tariffs and agent baselines as in POU games above. Notice that
the optimal baseline report for an agent is now defined relative to the profile they
use.

As in POU games, agents are motivated to form coalitions to reduce the rela-
tive variance in their predictions. However, for a coalition C to accurately report
its aggregate demand, its members must select and commit to a specific usage

2 Such profiles and values may be explicitly elicited or estimated using past consump-
tion data (see Sec. 6).



profile. We denote an assignment of profiles to agents as A : N Ñ
Ś

iPN Πi.
Under such an assignment, C’s consumption is normal, with mean µpC,Aq “
ř

iPC µpApiqq and std. dev. σpC,Aq “
a

ř

iPC σ
2pApiqq. The aggregate value ac-

crued by the coalition (prior to supplier payments) is the sum of its members’
values: V pC,Aq “

ř

iPC VipApiqq.

As in RVRJ, we begin by analyzing ex-ante MPOU games, where agents
make decisions and payments before consumption is realized. The characteristic
value v of a coalition C is the maximum value that coalition can achieve in ex-
pectation under full cooperation, that is, assuming an optimal profile assignment
and baseline report. We thus define vpCq “ maxA vpC,Aq, where

vpC,Aq “ V pC,Aq ´ µpC,Aqp´ σpC,AqLpp, p̄q (4)

Notice that profile selection does not arise in the POU setting.

In the following sections, we present a mechanism for MPOU games with
which the grand coalition organizes the individual consumption behavior of its
members (all agents in N) and the payments that flow among them. The mech-
anism proceeds as follows:

1. Agents report their consumption profiles to the mechanism (we assume this
report is truthful).

2. The mechanism calculates an assignment A of agents to profiles that max-
imizes social welfare. We elaborate on this assignment optimization at the
end of this section.

3. The mechanism calculates an ex-ante core stable payment tpiq for each agent
i that is based on all agents using their assigned profiles. We address payment
computation in Sec. 4.

4. In Sec. 5, we find that some agents have an incentive to defect from the
assigned profile, and we design separating functions to prevent these defec-
tions. The mechanism calculates a separating function Di for each agent
with an incentive to defect from their assigned profile.

5. At realization time, each agent i receives tpiq. Each agent i that has a sepa-
rating function receives Dipxiq, where xi is his/her realized consumption.

In the MPOU model, calculating a social welfare-maximizing assignment of
agents to profiles requires solving a non-convex optimization problem. We do
this using a mixed integer program with objective function given by (4), a bi-
nary assignment variable for each agent-profile pair, and a constraint that each
agent is assigned exactly one profile. The last term of the objective is non-convex:
σpC,Aq “

a

ř

iPC σ
2pApiqq. We replace the negative square root with a piece-

wise linear upper bound, which requires two binary variables per segment. As in
other assignment problems, we can relax the assignment variables: in practice,
relaxed solutions that are very close to integral.



4 Properties of MPOU Games

It is natural to ask whether, like POU games, ex-ante MPOU games are convex,
since convexity simplifies the analysis of stability and fairness. We show that
this is, in fact, the case. We begin with a technical lemma.

Lemma 1. Let xN,Π, τ, V y be an MPOU game. Let i P N and S Ă T Ď Nztiu
and j P T zS. Then we have:

vpS Y tiuq ´ vpSq ď vpS Y ti, juq ´ vpS Y tjuq (5)

Proof. We let A˚pSq denote the assignment of profiles that maximizes the social
welfare of S. In the case where there are multiple social welfare-maximizing
configurations of S, we use the one with highest aggregate variance. We observe
that vpT,A˚pSqq ď vpT q because A˚pSq imposes a constraint on the behavior of
S. For technical reasons, we break the proof into two cases based on whether it
is more beneficial for i) i to join coalition S when S is configured to maximize
vpSYtiuq or ii) i to join coalition SYtju when SYtju is configured to maximize
vpS Y tjuq.

Case 1. vpS Y tiuq ´ vpS,A˚pS Y tiuqq ą vpS Y ti, ju, A˚pS Y tjuqq ´ vpS Y tjuq

On both sides of the inequality, we are adding tiu to a set of agents without
changing the configuration of that set of agents. Thus, the inequality implies
that tiu contributes more value on the left side than on the right side. Since
the amount of value that tiu contributes depends only on the variance of the
coalition that it is joining, the inequality implies that σpS Y tju, A˚pS Y tjuq ă
σpS,A˚pS Y tiuqq.

Since j contributes a non-negative amount of variance, σpS,A˚pS Y tjuqq ď
σpSYtju, A˚pSYtjuqq, and likewise, σpS,A˚pSYtiuqq ď σpSYtiu, A˚pSYtiuqq.
Applying these inequalities yields σpS,A˚pS Y tjuqq ă σpS Y tiu, A˚pS Y tiuqq,
implying:

vpS Y tjuq ´ vpS,A˚pS Y tjuqq ă vpS Y ti, ju, A˚pS Y tiuqq ´ vpS Y tiuq (6)

Then, applying the inequalities vpS,A˚pSYtjuqq ď vpSq and vpSYti, ju, A˚pSY
tiuqq ď vpS Y ti, juq, and rearranging terms:

vpS Y tiuq ´ vpSq ă vpS Y ti, juq ´ vpS Y tjuq (7)

which is a stronger version of the lemma.

Case 2. vpS Y tiuq ´ vpS,A˚pS Y tiuqq ď vpS Y ti, ju, A˚pS Y tjuqq ´ vpS Y tjuq

Applying the inequality vpS,A˚pS Y tiuqq ď vpSq on the left side yields:

vpS Y tiuq ´ vpSq ď vpS Y ti, ju, A˚
pS Y tjuqq ´ vpS Y tjuq (8)

Applying on the right side vpS Y ti, ju, A˚pS Y tjuqq ď vpS Y ti, juq yields the
lemma:

vpS Y tiuq ´ vpSq ď vpS Y ti, juq ´ vpS Y tjuq (9)



From Lemma 1, we immediately obtain:

Theorem 1. The ex-ante MPOU game is convex.

Proof. If S “ T , then vpS Y tiuq ´ vpSq “ vpT Y tiuq ´ vpT q since the welfare-
maximizing configurations of S and T are the same. If S Ă T , we repeatedly
apply Lemma 1 to “grow” S one agent a time, creating a series of inequalities,
until we relate S and T .

Since the ex-ante MPOU game is convex, the Shapley value is in the core,
hence we can compute a core allocation by averaging the payments from any
number of join orders. In our experiments, we approximate the Shapley value
by sampling [4].

It is important that agents are incentivized to participate in the mechanism.
We show that MPOU games are individually-rational—no agent receives less
utility than her best outside option, i.e., what she would receive if she chose not
to participate in the mechanism. To achieve this, we augment an instance of the
game by adding a dummy profile to each agent with value equal to that of their
(best) outside option.

Theorem 2. Let G be an MPOU game where each agent has a profile π
piq
out with

V pπ
piq
outq “ θi, σpπ

piq
outq “ µpπ

piq
outq “ 0, where θi is the value of i’s outside option.

Then, G is ex-ante individually rational if core payments are used.

Proof. Core payments exist because G is an MPOU game, hence convex. Sup-
pose, by way of contradiction, agent i receives an expected payment less than θi.
The stability condition of core payments requires that tpiq ě vptiuq. However,
this contradicts the fact that vptiuq ě θi.

5 Incentives in MPOU Games

MPOU games introduce a new coordination problem for coalitions that do not
arise in POU games. In a fully-cooperative MPOU game, a coalition C agrees on
a joint consumption profile prior to reporting its (aggregate) predicted demand.
Despite this agreement, an agent i P C may have incentive to actually use a
profile that differs from the one agreed to. For instance, suppose agent i has
two profiles, π0 and π1, with Vipπ0q ą Vipπ1q, and that to maximize the social
welfare of C, i should use π1 (and receive coalitional payment tpiq). By deviating
from her agreed upon profile, i can increase her net utility (from tpiq to Vipπ0q´

Vipπ1q ` tpiq).
Typically, a penalty should be imposed for such a deviation to ensure that

C’s welfare in maximized. Unfortunately, i’s profile cannot be directly observed.
Only her realized consumption xi is observable, and it is related only stochasti-
cally to her underlying behavior (adopted profile). As such, any such transfer or
penalty in the coalitional allocation must depend on xi, showing that an ex-ante
analysis is insufficient for MPOU games (in stark contrast to POU games). Fur-
thermore, since xi is stochastic, it could have arisen from i using either profile



(i.e., we have no direct signal of the i’s chosen profile), which makes the design of
such transfers even more difficult. Finally, the poor choice of a transfer function
may compromise the convexity of the ex-ante game, undermining our ability to
compute core payments.

To address these challenges, we use a separating function Dipxiq. For each
agent i, Di maps i’s realized consumption to an additional ex-post separating
payment.

Definition 3. Di is a separating function (SF) for i under assignment A if it
satisfies the incentive and zero-expectation conditions.

– Incentive: Exi„ApiqrDipxiqs ą Exi„πrDipxiqs ` Vipπq ´ VipApiqq for any
π P Πi such that π ‰ Apiq.

– Zero-expectation: Exi„ApiqrDipxiqs “ 0.

Intuitively, the incentive condition ensures that the agent is incentivized to use
the assigned profile, and the zero-expectation condition requires that the pay-
ments introduced by the incentive condition do not affect the agent’s expected
payment if she uses the assigned profile. Since agents are assumed to be risk
neutral, each agent’s payoffs are unaffected by addition of a SF as long as the
agent uses the profile assigned by the coalition. Thus, payments remain in the
core after the addition of an SF.3

The rest of this section describes how to find SFs. We begin by showing that
a weaker form of separating function can trivially be transformed into a SF.

Definition 4. Di is a weak separating function (WSF) for i under assignment
A if Exi„ApiqrDipxiqs ą Exi„πrDipxiqs for any π P Πi such that π ‰ Apiq.

Remark 1. Let Di be a WSF for i under assignment A. Then, D1i “ w0Di `

w1 is an SF, where w0 “ maxπPΠi,π‰Apiq
Vipπq´VipApiqq

Exi„ApiqrDipxiqs´Exi„πrDipxiqs
and w1 “

´Exi„Apiqrw0Dipxiqs.

Thus, it is sufficient to find a WSF. When an agent has only two profiles,
this is straightforward: we let Di be the PDF of the assigned profile minus the
PDF of the unassigned profile. The proof for this statement is algebraic, using
the fact that N px;µ0, σ0qN px;µ1, σ1q has a closed form that is proportional to
a normal PDF in x.

Theorem 3. Let i be an agent with two profiles π0 and π1 and let Apiq “ π0.
Then, w.l.o.g., Dipxiq “ N pxi;µ0, σ0q ´N pxi;µ1, σ1q is a WSF for i under A.

Proof. We show that the minimum of Ex„N pµ0,σ0qrN px;µ0, σ0q´N px;µ1, σ1qs´

Ex„N pµ1,σ1qrN px;µ0, σ0q ´N px;µ1, σ1qs occurs when µ1 “ µ0 and σ1 “ σ0, and
that the value of the expression at that point is positive.

3 Our use of zero-expectation payments for risk-neutral agents is mechanically similar
to Cremer and McClean’s [5] revenue-optimal auction for bidders with correlated
valuations.



We make use of the fact that N px;µ1, σ1qN px;µ2, σ2q is a function propor-
tional to the PDF of a normal distribution. Specifically,

N px;µ0, σ0qN px;µ1, σ1q “

N
ˆ

µ0;µ1,
b

σ2
0 ` σ

2
1

˙

N
ˆ

x;
σ´2

0 µ0 ` σ
´2
1 µ1

σ´2
0 ` σ´2

1

,
σ2

0σ
2
1

σ2
0 ` σ

2
1

˙

(10)

Then, by expanding terms and applying (10):

Ex„N pµ0,σ0qrN px;µ0, σ0q ´N px;µ1, σ1qs´

Ex„N pµ1,σ1qrN px;µ0, σ0q ´N px;µ1, σ1qs

“
1

2σ0

?
π
´ 2N

ˆ

µ1;µ0,
b

σ2
0 ` σ

2
1

˙

`
1

2σ1

?
π

(11)

We then minimize with respect to µ1 and σ1. Since the middle term is the only
one that contains µ1, we can minimize it separately:

´
2

a

2πpσ2
0 ` σ

2
1q

exp

ˆ

´
pµ0 ´ µ1q

2

2pσ2
0 ` σ

2
1q

˙

(12)

Since the argument of the exponent is always non-positive, it is maximized when
it is zero, i.e., µ1 “ µ0. Making this substitution yields:

1

2σ0

?
π
´

2
a

2πpσ2
0 ` σ

2
1q
`

1

2σ1

?
π

(13)

Setting the derivative with respect to σ2
1 to zero yields two real roots of σ0 “ ˘σ1.

The second derivative at these points is positive. Thus, it is a minimum. The
value of the original expression at this point is 0 and positive otherwise.

With more than two profiles, this approach does not always work. Instead,
we can use a linear program (LP) to find coefficients of a linear combination
of the profile PDFs. Formally, denote the PDFs of the profiles as N ipxiq “
xN pxi;µ0, σ0q, . . . ,N pxi;µ|Πi|´1, σ|Πi|´1qy, their weights as yi, and search over

yi P R|Πi| for a separating function of the form Dipxi,yiq “ yi ¨ N ipxiq. We
use an LP that minimizes the L1-norm of yi subject to Exi„ApiqrDipxi,yiqs ą
Exi„πrDipxi,yiqs for all π P Πi, π ‰ Apiq. Ideally, we would also like to minimize
the variance of the separating payment, giving agents maximal certainty w.r.t.
this payment; however, this objective is not tractable in an LP (we leave this
question to future work). In our experiments below, we do, however, assess the
variance of the separating payment.

A feasible yi corresponds to a linear combination of vectors whose sum has
only positive entries. We call these the difference vectors of Di. While we cannot
prove that a feasible yi always exists, viewing the problem in terms of difference
vectors suggests why they exist in practice:

Definition 5. Let Apiq be π0 (w.l.o.g.). For each profile
πk P Πi the difference vector dk “ Ex„πk rN px;π0, σ0s ´

xEx„πk rN px;µ1, σ1qs, . . . ,Ex„πk rN px;µ|Πi|´1, σ|Πi|´1qsy.



Note that these vectors do not depend on yi. We can restate the LP constraints
using difference vectors:

Theorem 4. Let i have profiles Πi and let A assign a profile to i. There exists
yi P R|Πi| that makes Dipxi,yiq a WSF if and only if there is a linear combina-
tion of the difference vectors of Dipxi,yiq that has only positive entries.

Proof. First, we prove the forward direction. Let c be the coefficients of the
linear combination of the difference vectors that has only positive entries, i.e.,
ř

kP|Πi|
ckdk “ b where b is element-wise positive. Then, Exi„ApiqrDipxi, cqs ´

Exi„πrDipxi, cqs “ cdk “ bk´1. Since b is element-wise positive, letting yi “ c
makes Dipxi,yiq a separating function.

The reverse direction is also straightforward. Suppose Dipxi,yiq is a separat-
ing function. Then, let bk´1 “ Exi„ApiqrDipxi, cqs ´ Exi„πrDipxi, cqs “ yi ¨ dk.
Thus, taking yi as the coefficients of the linear combination of difference vectors
equals b, which has only positive entries.

Corollary 1. Let dk be the difference vectors for agent i. If the difference vec-
tors are linearly independent, a setting of yi exists that makes Dipxi,yiq a WSF.

Proof. If the difference vectors are linearly independent, there exists a coefficient
vector c that makes

ř

kP|Πi|
ckdk elementwise positive. We can take yi “ c to

satisfy the corollary.

We generally expect a random set of vectors to be linearly independent as the
set of matrices drawn from the reals with non-independent rows has Lebesgue
measure zero. We have yet to encounter an instance where a separating func-
tion does not exist in our experiments. It is an open question as to whether a
separating function of this form always exists.

6 Manipulation in MPOU Games

While we defer a thorough discussion of manipulation of MPOU games to future
work, we briefly discuss a simple form of manipulation: adding profiles to, or
removing profiles from, an agent’s report. Formally, we say that an agent can
manipulate an MPOU game if they gain expected utility by misreporting their
true set of profiles. Here, we simplify the discussion by assuming that agents
have a true underlying set of profiles, and we rely on the results of the previous
section by assuming that each agent can be incentivized to use their assigned
profile without changing their expected payoff.

Agents are not incentivized to strategically withhold information if they oth-
erwise report truthfully. However, reporting additional untruthful profiles will
benefit the agent, as long as those profiles are not assigned by the mechanism.

Theorem 5. Let G be an MPOU game, let G1 be identical to G except agent

i reports an additional profile π
piq
extra . Let all of i’s reported profiles be truthful

except π
piq
extra and let at least one of these conditions hold: i) π

piq
extra is truthful or



ii) π
piq
extra is not the assigned profile. Then, agent i’s payoff in G1 is greater than or

equal to its payoff in G if payments are used that average marginal contributions
over the same join orders.

Proof. First, we establish that i’s Shapley value is greater with the additional
profile. Each time agent i is added to a coalition S in a join order, agent i’s
marginal contribution to vpS Y tiuq with the extra profile is greater than or
equal to its contribution with its original profiles. Thus, tG1piq ě tGpiq.

This condition is not sufficient to ensure that i increases her payoff, which is
equal to her coalitional payment minus the reported value of the assigned profile
plus the true value of the assigned profile. In condition i), the Shapley value
equals the payoff value and in condition ii), the assigned profile is the same in
G and G1. Thus, i’s payoff is greater or equal in G1 in either case.

Note that the theorem applies both to the Shapley value, which can be expressed
as an average over marginal contributions over join orders, and to sampling-based
approximations, such as the ones used in our experiments.

We outline two ways of combatting manipulation by reporting additional
profiles. The first is to simply limit the number of reported profiles, either by
creating a cap or by charging agents per profile they report, limiting the amount
agents can gain by manipulating. This approach leads to a non-truthful equilib-
rium, and it penalizes agents who have more complicated utility functions.

The second approach emerges from an approximation to the Shapley value
that happens to remove the incentive to add additional profiles that are not
selected. Recall that i’s Shapley value in coalition C can be interpreted as the
average marginal value that i contributes over all orders that agents join C.
Computing this requires recalculating the optimal assignment of profiles before
and after i joins since the addition of i may cause change the optimal assignment
for the other agents. Because this is computationally expensive, we approximate
it by fixing agents to the profile they are assigned in the grand coalition. Formally,
we let i’s Shapley value with fixed profiles be

sCpi,Nq “
ÿ

SĎCztiu

|S|!p|C| ´ |S| ´ 1q!

|N |!
pvpS Y tiu, A˚pNqq ´ vpS,A˚pNqqq (14)

Recall that vpS,A˚pNqq is the value of coalition S under the assignment that
maximizes the value of coalition N , i.e., the grand coalition. We find the approxi-
mation is quite close to the true Shapley value in our setting. The approximation
sacrifices exact convexity because it does not discriminate between agents based
on how attractive their unassigned profiles are, which has the additional conse-
quence that, as long as agents report their true profiles, they have no incentive
to add additional false ones.

Theorem 6. Let G be an MPOU game, let G1 be identical to G except agent

i reports an additional profile π
piq
extra . Let all of i’s reported profiles be truthful

except π
piq
extra . Then, agent i’s payoff in G1 is less than or equal to its payoff in



G, if payments are used that average marginal contributions over the same join
orders and fix i’s profile to its assigned profile.

Proof. Since we assume that i reports all of its profiles truthfully, the true value

of π
piq
extra is 0. Then, either the mechanism selects π

piq
extra or it does not. If it does,

i’s payoff will be negative since it receives 0 value from π
piq
extra , and thus, its payoff

decreased because the mechanism is individually rational according to Thm. 2.

If it does not, i’s payoff is unchanged because π
piq
extra does not affect its payoff.

7 Learning Utility Models

To empirically test the MPOU framework and our separating functions, we re-
quire consumer utility functions. As we know of no data set with such utility
functions, we learn household (agent) utility models from real electricity usage
data from Pecan Street Inc. [13].4 We define our prediction period as 4-7 pm each
day, when electricity usage typically peaks in Austin, Texas, where the data was

collected. We decompose utility into two parts: V
pµq
i pw, µq describes the value

an agent i derives from her mean consumption given a vector w of weather con-

ditions; and V
pσq
i pσ, µq represents utility derived from variance in consumption

behavior. Agent i’s utility is Vipw, µ, σq “ V
pµq
i pw, µqV

pσq
i pσ, µq.

Estimating V
pµq
i is difficult, since we lack data for some aspects of the prob-

lem. Thus, we make some simplifying assumptions: (i) consuming 0 kWh yields

value $0; and (ii) V
pµq
i pw, µq is concave and increasing. We learn a model for

each of 25 households that have complete data from 2013–15 (about 1100 data
points per household), using select weather conditions w and mean consumption
between 4-7 pm as input, and outputting value (in dollars). We use this valua-
tion function to predict consumption by maximizing an agent’s net utility under
the observed price:

V
pµq
i pw, µq “ z

p0q
i pwq

´

µ´ z
p1q
i pwq

¯z
p2q
i pwq

` z
p3q
i pwq (15)

constraining z
p0q
i ą 0, z

p1q
i ą 0, 0 ă z

p2q
i ă 1, z

p3q
i pwq ě 0 (Fig. 1 depicts the

utility model). We use a homogenous function to represent utility [18]. The term

z
p3q
i pwq has no influence on predictions: it can be viewed as inherent value due

to weather, and accounts for the flexibility provided by the z
p1q
i term, which may

create valuations where consumption 0 yields negative value (violating our as-

sumptions). To prevent this, we set z
p3q
i pwq to ensure the tangent at the predicted

consumption for $0.64 (the largest price in the data set) passes through (0,0)

(see Fig. 2). When this tangent crosses the y-axis above 0, we set z
p3q
i pwq “ 0 and

splice in an exponential axb that passes through (0,0) and matches the derivative
at the splice point.

4 Publicly available at pecanstreet.org.

pecanstreet.org.
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Fig. 1. The learned valuation model.
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For training, we use the model to predict consumption by solving the net
utility maximization problem, maxµpVipw, µq ´ µpq, yielding:

µ̂pw, pq “
p

z
p0q
i pwqz

p2q
i pwq

1

z
p2q
i
pwq´1 ` z

p1q
i pwq (16)

We represent z
p0q
i , z

p1q
i and z

p2q
i in fully-connected single-layer neural net-

works, each with 10 hidden units and ReLU activations, and train the model
with backpropagation. We implement the model in TensorFlow [1] using the
squared error loss function and the Adam optimizer [6]. We use Dropout [19]
with a probability of 0.7 on each hidden unit.

We split the data into 80% train and 20% test for each household. Table 1
compares the prediction accuracy of our model (“valuation”) to (i) an unstruc-
tured neural network, and (ii) the best constant prediction for each household.
The unstructured net learns a mapping from xw, py to µ directly using 10 hidden
units, without an intervening utility model.5 The best constant prediction disre-
gards weather and price data, and simply predicts average consumption for that
household. Table 1 shows that the valuation model overfits somewhat, but that
predictive accuracy is on par with the unstructured model. This shows that our
constraints on the form of the valuation function are not unduly restrictive and
validates the value predictions produced by these learned models. However, we
believe these value functions significantly underestimate value because we lack
consumption observations when the price is higher is than $0.64.

Figure 3 shows the learned valuation for the 25 households. Each line repre-
sents a household’s response to different weather conditions. While temperature
is the most significant predictor of power usage, different households appear to
exhibit sensitivity to different factors (e.g., the household on the right is highly
sensitive to humidity).

5 Our other implementation choices are the same as the valuation model, except we
use Dropout of 0.5.



Table 1. Comparison of model prediction accuracy by root-mean-square error
(RMSE). We divide each household’s consumption amounts by their largest observed
consumption.

Model
Mean
train
RMSE

Std. dev.
train
RMSE

Mean
test
RMSE

Std. dev.
test
RMSE

Valuation 0.137 0.0168 0.148 0.0194
Unstructured 0.142 0.0226 0.144 0.0284
Constant 0.204 0.0345 0.205 0.0411

Fig. 3. Learned value models for the 25 households with consumption mean (kwh) on
the x-axis and value ($) on the y-axis. The red line represents the median weather
conditions. The dotted line represents the median day with 90th percentile or higher
temperature. The dashed and green lines are the same for sunshine and humidity,
respectively.



Modeling Unpredictable Consumption Unfortunately, we do not have ac-
cess to electricity usage data where consumers are charged differently depending
on the accuracy of their predictions. Our model of the value of unpredictable
consumption is thus speculative, but uses the Pecan Street data as a starting
point. We assume that each household chooses the σ that maximizes its utility
(since they are not being charged for σ), and that it has an optimal fraction βi
of σ{µ that does not depend on other conditions. We estimate βi from the data
by treating each data point as having an observed σ equal to the absolute error
in consumption prediction made by the learned valuation model. We assume no
value is gained by increasing σ above the optimal ratio, and use an exponential
to represent the loss in value when σ is reduced,

V
pσq
i pσ, µq “ max

ˆ

µ{σ

βi
, 1

˙γi

, (17)

where γi is a constant representing i’s cost for being predictable. A higher γi
means that consumer i values variance more highly. In our experiments, we
sample γi from the uniform distribution over the interval r0.1, 2s.

8 Experiments

We experimentally evaluate our mechanism for MPOU games. The questions we
study experimentally are:

1. How important is consumer coordination under POU tariffs?
2. What is the social welfare gain from using an MPOU model vs. a flat tariff?
3. How important is an agent’s choice of reported profiles?
4. What are the variances of the payments introduced by the separating func-

tions?

8.1 Experimental Setup

We first describe the experimental setup: how we select agents, profiles and tar-
iffs. For each trial, we select weather conditions w uniformly at random from the
Pecan Street data. To generate agents, we sample from our 25 learned household
utility models, using w as input and adding a small amount of zero mean noise
to the model parameters. We sample γi from the uniform distribution r0.1, 2s
for each agent i. Each data point is an average of 100 trials with 5000 agents,
unless otherwise noted. One of the goals of our experiments is to study the con-
sequences of different choices of reported profile. To do this, we vary the way
profiles are generated. Each agent has four profiles: a base profile (predicted to
be optimal under a flat rate tariff with rate equal to the fixed-rate p of the POU
tariff), and three others reflecting reduced consumption mean or variance. The
first reduces the base profile mean by the amount required to reduce value by
u%, which we call the profile spacing. The second reduces variance to reduce
value by u%. The third reduces both. We vary u throughout the experiments.



To generate tariffs, we vary the amount of emphasis each puts on accurate
predictions vs. the amount consumed. We let the predictivity emphasis (PE) of
a tariff w.r.t. a group of agents be the fraction of the expected total cost paid
for prediction penalties when each uses her base profile. In practice, PE should
be set to match the properties of the reserve power generation capacity that is
available: a higher PE corresponds to more expensive reserves. A tariff is revenue-
equivalent to another with respect to a specific set of profiles if the revenue of
the two is the same for that set. All of our tariffs will be revenue-equivalent
with respect to the set of base profiles. To find a revenue-equivalent tariff with a
certain PE, we use a numerical solver to find a tariff of the form xp, r, ry with the
appropriate total cost. Intuitively, a higher PE should result in larger benefits
from POU tariffs, and we find that to be the case in our experiments.

To generate Shapley values, we ample a number of join orders equal to the
logarithm of the number of agents in the instance. Shapley values were very close
to linear in the std. dev. of the assigned profile. The average Shapley payment
for prediction was $0.41 per kWh of uncertainty across trials with PE 10%, and
$0.82 per kWh with PE 20%.6 Within a single trial, the std. dev. of this ratio
was less than 0.01 on average, suggesting that it is not necessary to optimize
the choice of profiles every time an agent added in a join order—it is sufficient
to fix each agent’s profile to the assigned one. We exploit this fact to run larger
experiments.

8.2 Results

We first address the question of how important it is for agents to coordinate their
consumption under a POU tariff. We define the uncoordinated POU setting as
the scenario where agents are subject to a POU tariff, but do not coordinate
their consumption behavior, i.e., each agent uses the profile that individually
maximizes her net utility relative to that POU tariff. Then, as is standard in
that setting, the grand coalition forms and makes the optimal baseline predic-
tion. Figure 4 shows the social welfare derived by agents in the uncoordinated
POU setting as a percentage of their social welfare under a revenue-equivalent
fixed-rate tariff. We see that the average social welfare achieved in the unco-
ordinated POU setting is less than that of the fixed rate setting for all profile
spacings. Individual agents react to the POU tariff by increasing their predic-
tivity, and thus decreasing their realized value, but they do not account for the
predictivity discount that results from being part of a coalition. As profile spac-
ing increases, more agents shift away from their base profile and social welfare
decreases, reaching 70% when spacing is 25%. These results underscore the need
for a way for agents to coordinate their profile choices under POU tariffs and
highlight one of the main challenges of successfully implementing a POU tariff
in practice.

Next, we study the social welfare gain that can be achieved by a POU tar-
iff when agents coordinate optimally under the MPOU framework. Figure 5

6 This and other tariffs in this section have 0.2 ď p “ p̄ ď 1.5.



Fig. 4. Profile spacing vs. % of social wel-
fare of fixed-rate tariff for uncoordinated
POU setting and % of agents that change
profile

Fig. 5. Profile spacing vs. social welfare %
gain from fixed-rate tariff and % of agents
that change profile

shows the effect of profile spacing (u) on the welfare gained by switching from
a fixed-rate tariff to a revenue-equivalent POU tariff.7 Overall welfare gains are
moderate, around 3.13% for PE of 10% and 4.4-4.9% for PE of 20%. A higher
PE results in a larger social welfare gain because agents only benefit from coop-
erating when trading off predictivity for inherent utility. Profile spacing appears
to have limited impact on social welfare gain, suggesting that most of the gain
is achieved by the effective reduction in fixed-rate price under a POU tariff. We
note that these experiments are the first to study end-to-end social welfare gain
from a POU tariff.

Figure 5 appears to indicate that personalizing profile spacing based on each
agent’s value for predictivity would increase social welfare further. We can see
this because increasing profile spacing increases welfare up to a spacing of 15%
for both PE levels, but the number of agents that shift profiles decreases as
spacing is increased (shown on the right-side axis). Thus, we hypothesize that
welfare could be further increased if agents with higher γ spaced their profiles
farther apart than those with lower.

Next, we address the question of uncertainty introduced by separating pay-
ments. Recall that while separating payments have expectation zero, they in-
troduce additional uncertainty to agent payments. We find that the amount of
uncertainty introduced is, in fact, minimal, and decreases with instance size and
increased PE. Figure 6 shows the same of the standard deviation of the sepa-
rating payment to the Shapley payment for predictivity. The std. dev. of the
separating payment is on average 15-20% of predictivity payment for PE of 10%
and 7.5-10% for PE of 20%, and increases slightly as profile spacing increases.

7 Each instance took around 3 minutes on a single thread of 2.6 Ghz Intel i7, 8 GB
RAM.



Note that only agents that actually require a separating function are taken into
account, around 1-2% of all agents for PE of 10% and 5-10% for PE of 20%,
on average. More agents require separating payments as PE increases, but the
uncertainty introduced by each decreases. Note that these are uncertainties for
a single instance of the game, and if the game is played repeatedly (e.g., ev-
ery day), the aggregate uncertainty will decrease as the independent random
variables are added.
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Fig. 7. Comparison of the standard devi-
ation of the separating function payment
to the ex-ante payment for prediction ac-
curacy

Figure 7 shows the same uncertainty ratio for a single large instance versus
the predictivity flexibility (γ) of each agent. This instance has PE of 20%, 100,000
agents, profile spacing of 15% and takes 90 min. to solve. The ratio is shown
for the 4876 agents that require separating functions. The magnitude of the
introduced uncertainty is smaller in this larger instance with an average of 2.07%
(and not exceeding 3% for any agent). In addition, predictivity flexibility has
little affect on the introduced uncertainty: the linear least-squares fit (red line)
has slope of less than 10´4.

9 Conclusion

We have introduced multiple-profile POU (MPOU) games, a framework for co-
ordinating agent behavior under POU tariffs. MPOU games allow agents to
express their consumption utility functions, while maintaining convexity of the
basic POU model. MPOU games introduce a new class of incentive problems due
to agent actions being partially observable: we introduce separating payments to



restore proper incentives. Our experimental utility models are learned from his-
torical electricity usage data in a novel way. Our experiments show that, while
social welfare gained by introducing the MPOU model (w.r.t. a fixed-rate tariff)
appear moderate, the gains relative to a POU tariff are substantial. The gains
over a fixed-rate tariff may be worthwhile in a large system and may be further
enhanced by more sophisticated agent utility and behavior profile models. They
depend both on the predictivity emphasis (PE) of reserve generation and on
consumers’ value for consuming unpredictably, which are both areas where more
real-world data is needed. We find that the uncertainty introduced by separat-
ing payments decreases as instance size increases, and decreases in aggregate as
more iterations of the game are played. Increased PE increases the number of
agents that need separating functions, but the uncertainty introduced decreases.

Interesting future directions for POU/MPOU games remain. Following up on
our approach, we could more precisely test social welfare gain with better access
to household utility data, especially for variance of consumption, and data about
the PE of generation mixes. Other critical aspects of the system are the ability of
agents to manipulate, which we only briefly touch on, and how to elicit household
utility functions. Thinking more broadly, it would be desirable to allow agents to
make predictions contingent on intermediate predictions (e.g., of weather) thus
reducing the need for agents to make accurate weather forecasts.

While our discussion of POU and MPOU games has focused on electricity
markets, we believe the approach may be more widely applicable in other cases
where agents are contending with a scarce resource, e.g., internal allocation of
computing resources across groups in a company or university.
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