
1 Proofs
Lemma 1. Let xN,Π, τ, V y be an MPOU game. Let i P N
and S Ă T Ď Nztiu and j P T zS.

vpS Y tiuq ´ vpSq ď vpS Y ti, juq ´ vpS Y tjuq (1)

Proof. We let A˚pSq denote the assignment of profiles that
maximizes the social welfare of S. In the case where there are
multiple social welfare-maximizing configurations of S, we
use the one with highest aggregate variance. We observe that
vpT,A˚pSqq ď vpT q becauseA˚pSq imposes a constraint on
the behavior of S. For technical reasons, we break the proof
into two cases based on whether it is more beneficial for i) i to
join coalition S when S is configured to maximize vpSYtiuq
or ii) i to join coalition S Y tju when S Y tju is configured
to maximize vpS Y tjuq.

Case 1. vpS Y tiuq ´ vpS,A˚pS Y tiuqq ą vpS Y

ti, ju, A˚pS Y tjuqq ´ vpS Y tjuq

This inequality implies that σpS Y tju, A˚pS Y tjuq ă
σpS,A˚pS Y tiuqq. Since j contributes a non-negative
amount of variance, σpS,A˚pSYtjuqq ď σpSYtju, A˚pSY
tjuqq, and likewise, σpS,A˚pSYtiuqq ď σpSYtiu, A˚pSY
tiuqq. Applying these inequalities yields σpS,A˚pS Y

tjuqq ă σpS Y tiu, A˚pS Y tiuqq, implying:

vpS Y tjuq ´ vpS,A˚pS Y tjuqq ă

vpS Y ti, ju, A˚pS Y tiuqq ´ vpS Y tiuq (2)

Then, applying the inequalities vpS,A˚pS Y tjuqq ď vpSq
and vpS Y ti, ju, A˚pS Y tiuqq ď vpS Y ti, juq, and rear-
ranging terms:

vpS Y tiuq ´ vpSq ă vpS Y ti, juq ´ vpS Y tjuq (3)

which is a stronger version of the lemma.

Case 2. vpS Y tiuq ´ vpS,A˚pS Y tiuqq ď vpS Y

ti, ju, A˚pS Y tjuqq ´ vpS Y tjuq

Applying the inequality vpS,A˚pS Y tiuqq ď vpSq on the
left side yields:

vpS Y tiuq ´ vpSq ď vpS Y ti, ju, A˚
pS Y tjuqq ´ vpS Y tjuq

(4)

Applying on the right side vpS Y ti, ju, A˚pS Y tjuqq ď
vpS Y ti, juq yields the lemma:

vpS Y tiuq ´ vpSq ď vpS Y ti, juq ´ vpS Y tjuq (5)

Theorem 1. The ex-ante MPOU game is convex.

Proof. If S “ T , then vpSYtiuq´vpSq “ vpTYtiuq´vpT q
since the welfare-maximizing configurations of S and T are
the same. If S Ă T , we repeatedly apply Lemma 1 to “grow”
S one agent a time, creating a series of inequalities, until we
relate S and T .

Theorem 2. Let i be an agent with two profiles π0 and π1

and let Apiq “ π0. Then, w.l.o.g., Dipxiq “ N pxi;µ0, σ0q ´

N pxi;µ1, σ1q is a separating function for i under A.

Proof. We will show that the minimum of
Ex„N pµ0,σ0qrN px;µ0, σ0q ´ N px;µ1, σ1qs ´

Ex„N pµ1,σ1qrN px;µ0, σ0q ´ N px;µ1, σ1qs occurs when
µ1 “ µ0 and σ1 “ σ0 and that the value of the expression at
that point is positive.

We make use of the fact that N px;µ1, σ1qN px;µ2, σ2q is
a function proportional to the PDF of a normal distribution.
Specifically,
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Then, by expanding terms and applying Equation 6:

Ex„N pµ0,σ0qrN px;µ0, σ0q ´N px;µ1, σ1qs´

Ex„N pµ1,σ1qrN px;µ0, σ0q ´N px;µ1, σ1qs
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We then minimize with respect to µ1 and σ1. Since the middle
term is the only one that contains µ1, we can minimize it
separately:
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Since the argument of the exponent is always non-positive, it
is maximized when it is zero, i.e., µ1 “ µ0. Thus, we can
make this substitution and rewrite the overall expression:
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Taking the derivative with respect to σ2
1 and setting it to zero

yields two real roots of σ0 “ ˘σ1. The second derivative at
these points is positive. Thus, it is a minimum.

The value of the original expression at this point is 0 and
positive otherwise.

Theorem 3. Let i be an agent with profiles Πi and let A
assign a profile to i. There exists yi P R|Πi| that makes
Dipxi,yiq a separating function if and only if there is a lin-
ear combination of the difference vectors of Dipxi,yiq that
has only positive entries.

Proof. First, we prove the forward direction. Let c be the co-
efficients of the linear combination of the difference vectors
that has only positive entries, i.e.,

ř

kP|Πi|
ckdk “ b where

b is element-wise positive. Then, Exi„ApiqrDipxi, cqs ´
Exi„πrDipxi, cqs “ cdk “ bk´1. Since b is element-wise
positive, letting yi “ c makes Dipxi,yiq a separating func-
tion.

The reverse direction is also straightforward. Suppose
Dipxi,yiq is a separating function. Then, let bk´1 “

Exi„ApiqrDipxi, cqs ´ Exi„πrDipxi, cqs “ yi ¨ dk. Thus,
taking yi as the coefficients of the linear combination of dif-
ference vectors equals b, which has only positive entries.
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Figure 1: The form of the
learned valuation model.
NNp10q denotes a neu-
ral network with 10 hidden
units.
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Figure 2: Translating the
valuation function to pass
through the origin.

Corollary 1. Let dk be the differences vectors for agent i. If
the difference vectors are linearly independent, a setting of yi
exists that makes Dipxi,yiq a separating function.

Proof. If the difference vectors are linearly independent,
there exists a coefficient vector c that makes

ř

kP|Πi|
ckdk

elementwise positive. We can take yi “ c.

2 Model Details
As described in the in paper, agent i’s utility Vipw, µ, σq is
decomposed into Vipw, µ, σq “ V

pµq
i pw, µqV

pσq
i pσ, µq. Then

V
pµq
i pw, µq is restricted to the form:

V
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(10)

constraining zp0qi ą 0, zp1qi ą 0, 0 ă z
p2q
i ă 1, zp3qi pwq ě 0

(Figure 1 depicts the utility model). The term z
p3q
i pwq has no

influence on predictions: it can be viewed as inherent value
due to weather, and is used to account for the flexibility pro-
vided by the zp1qi term, which may create valuations where
consumption 0 yields negative value (violating our assump-
tions). To prevent this, we set zp3qi pwq to ensure the tangent
at the predicted consumption for $0.64 (the largest price in
the data set) passes through (0,0). (see Figure 2). When this
tangent crosses the y-axis above 0, we set zp3qi pwq “ 0 and
splice in an exponential function of the form axb that passes
through (0,0) and matches the derivative at the splicing point.

Figure 4 shows the learned valuation functions for the 25
households. Each line represents a household’s response to
different weather conditions.
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Figure 3: Comparison of the standard deviation of the sepa-
rating function payment to the ex-ante payment for prediction
accuracy. Bars show one standard deviation. 5000 agents,
100 trials.



Figure 4: Learned value models for the 25 households with consumption mean (kwh) on the x-axis and value ($) on the y-axis.
The red line represents the median weather conditions. The dotted line represents the median day with 90th percentile or higher
temperature. The dashed and green lines are the same for sunshine and humidity, respectively.


