Efficient Coordinated Power Distribution on Private Infrastructure

Andrew Perrault and Craig Boutilier {perrault,cebly}@cs.toronto.edu
May 8, 2014

Background—Smart Grid

- Smart grid: gathers info about own operation
- Intelligence required to realize potential
- This talk: organizing agent behavior in electrical grids

Background—Microgrids

- Electricity generation + energy storage + loads
- Usually operates connected to a centralized grid
- 685 MW (2013), 4 GW (2020 projection)

University of California, San Diego Microgrid

- Largest in US
- 100 buildings, 42 MW peak load, >50k people
- >92% annual electricity self-generation

Geisel Library, UCSD

Problem

Problem

- Efficiently coordinate:
 - Locally-generated and main-grid power
 - Use of private and public infrastructure
 -while satisfying incentives
- Major effects on realistic grids

Modeling Hybrid Public-Private Networks

Objective: Minimize Physical Losses

- Resistive losses (DC approximation)
 - Resistance (R), voltage (U): properties of infrastructure
 - Current (I) proportional to power but current² proportional to resistive losses
- Linear losses at transformer

и

Current (I): focus of optimization I²: source of difficulties

Basic Optimization Problem

- External power req'd = net demand + losses
- Minimize external power = minimize losses
- Control priv. infrastructure to minimize amount of external power req'd
 - Assumption: local generation from renewables
- Intuition: minimize amount of flow and distribute flow evenly across lines

Side Deals

- Grid prices do not reflect true value
- Private infrastructure allows agents to trade outside of the main grid
- Side deals can reduce overall efficiency

With Private Edge

Profitable for these agents to trade privately

With Private Edge

Without Private Edge

Central Control of Private Edge

Approach

- Calculate flow that maximizes efficiency under organizational assumptions
 - Quadratically-constrained quadratic program in our model
- Find payments that support that flow
 - Required because we don't control the private infrastructure
 - Cooperative/competitive game with nonindependent coalitions

Incentives

- Cooperative/competitive game
 - Agents form coalitions—only agents in the same coalition can trade
 - Coalitions act strategically
 - Coalitions pay or are paid by their members
 - Values/strategy spaces of coalitions not independent
- "Satisfy incentives" = stabilize grand coalition

Coalitions Are Not Independent

Incentives

- Can use properties of optimization to compute supporting payments if they exist
- Market Games (Shapley and Shubik, 1975) are closest existing game-type
 - Each agent has an endowment, utility function
 - Core always exists, easy to find if losses between agents are independent
 - No natural generalization to non-independent losses
- Open problem: show that supporting payments always exist or find a counterexample
 - All instances to date have supporting payments

Models of Agent Behavior

- Ad hoc: self-interested, limited information
- Private self-interest: self-interested, full information
- Cooperative: global social welfare-maximizing assuming no control of public infrastructure
- Integrated: global social welfare-maximizing and fine-grained control of public infrastructure

Empirical Evaluation of Impact

- Public network: IEEE 300-bus test system
- Private network: random graph on same nodes
 - Each edge included independently with equal probability

Empirical Evaluation of Impact

Losses: smaller = better

Edge density on private network

Empirical Evaluation of Impact

Conclusions

Contributions

- Calculate optimal flow, payments in idealized model
- Open problem: market games with non-independent losses
- Coordination is critical

Future work

- Richer agent preference space
 - Time-based decisions
 - Comfort vs. cost
- New game type—representation as potential function game?

Questions? Further discussion: poster session at lunch today.