
End-to-End Game-Focused Learning of Adversary Behavior in

Security Games

1 Proof of Section 3 Theorems

Theorem 1 (Equal defender values). Consider a two-target SSG with a rational attacker, equal defender

values for each target, and a single defense resource to allocate, which is not subject to scheduling constraints

(i.e., any nonnegative marginal coverage that sums to one is feasible). Let z0 and z1 (w.l.o.g., we assume

z0 ≥ z1) be the attacker’s values for the targets, which are observed by the attacker, but not the defender,

and we assume w.l.o.g. are non-negative and sum to 1.

The defender has an estimate of the attacker’s values (ẑ0, ẑ1) with mean squared error (MSE) ε2. Suppose

the defender optimizes coverage against this estimate. If ε2 ≤ (1− z0)2, the ratio between the highest DEU

under the estimate of (ẑ0, ẑ1) with MSE ε2 and the lowest DEU is:

z0 + ε

z1 + ε
(1)

Proof. Given the condition that ε2 ≤ (1 − z0)2, there are two configurations of ẑ that have mean squared

error ε2: ẑ0 = z0 ± ε, ẑ1 = z1 ∓ ε, yielding defender utility −z1 − ε and −z0 − ε, respectively, because the

attacker always attacks the target with underestimated value. The condition on ε2 ≤ (1 − z0)2 is required

to make both estimates feasible. z0 + ε ≥ z1 + ε because z0 ≥ z1.

Lemma 1. Consider a two-target, zero-sum SSG with a rational attacker, and a single defense resource,

which is not subject to scheduling constraints. The optimal defender coverage is x0 = z0 and x1 = z1, and

the defender’s payoff under this coverage is −(1− z0)z0 = −(1− z1)z1.

Proof. The defender’s maximum payoff is achieved when the expected value for attacking each target is

equal, and we require that x0 + x1 ≤ 1 for feasibility. With x0 = z0 and x1 = z1, the attacker’s payoff is
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(1− z0)z0 if he attacks target 0 and (1− z1)z1 = (1− (1− z0))(1− z0) = z0(1− z0) if he attacks target 1.

Theorem 2 (Zero-sum). Consider the same setting as Thm. 1 except the utilities are zero-sum. If ε2 ≤

(1−z0)2, the ratio between the highest DEU under the estimate of (ẑ0, ẑ1) with MSE ε2 and the lowest DEU

is:

(1− (z1 − ε))z1
(1− (z0 − ε))z0

(2)

Proof. Given the condition that ε2 ≤ (1 − z0)2, there are two configurations of ẑ that have mean squared

error ε2: ẑ0 = z0± ε, ẑ1 = z1∓ ε, yielding defender utility −(1− (z1− ε))z1 and (1− (z0− ε))z0, respectively,

because the attacker always attacks the target with underestimated value. The condition on ε2 is required

to make both estimates feasible. Because z0 ≥ z1, −(1− (z0 − ε))z0 ≤ −(1− (z1 − ε))z1.

Theorem 3. Consider the setting of Thm. 2, but in the case of a QR attacker. For any 0 ≤ α ≤ 1, if

λ ≥ 2
(1−α)ε log 1

(1−α)ε , the defender’s loss compared to the optimum may be as much as α(1 − ε)ε under a

target value estimate with MSE ε2.

Proof. Let f(p) denote the defender’s utility with coverage probability p against a perfectly rational attacker

and g(p) denote their utility against a QR attacker. Suppose that we have a bound

g(p)− f(p) ≤ δ

for some value δ. Let p∗ be the optimal coverage probability under perfect rationality. Note that for an

alternate probability p′ > p∗

g(p′) ≤ f(p′) + δ

= f(p∗)− (p′ − p∗)ε+ δ

≤ g(p∗)− (p′ − p∗)ε+ δ (since f(p) ≤ g(p) holds for all p)

and so any p′ > p∗ + δ
ε is guaranteed to have g(p′) < g(p∗), implying that the defender must have

p′ ≤ p∗ + δ
ε in the optimal QR solution.

We now turn to estimating how large λ must be in order to get a sufficiently small δ. Let q be the

probability that the attacker chooses the first target under QR. Note that we have f(p) = εp and g(p) =
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(1− p)(1− ε)q + pε(1− q). We have

g(p)− f(p) = (1− p)(1− ε)q + pε(1− q)− εp

= [(1− p)(1− ε)− pε]q

≤ q

For two targets with value 1 and ε, q is given by

eλ(1−ε)(1−p)

eλεp + eλ(1−ε)(1−p)
=

1

1 + eλ[εp−(1−ε)(1−p)]

Provided that λ ≥ 1
εp−(1−ε)(1−p) log 1

δ = 1
p−(1−ε) log 1

δ , we will have g(p) − f(p) ≤ δ. Suppose that we

would like this bound to hold over all p ≥ 1 − αε for some 0 < α < 1. Then, p − (1 − ε) ≥ (1 − α)ε and

so λ ≥ 1
(1−α)ε log 1

δ suffices. Now if we take δ ≤ (1 − α)ε2, we have that for λ ≥ 2
(1−α)ε log 1

(1−α)ε , the QR

optimal strategy p′ must satisfy p′ ≤ 1−αε, implying that the defender allocates at least αε coverage to the

target with true value 0. Suppose the attacker chooses the target with value 1 with probability q∗. Then,

the defender’s loss compared to the optimum is q∗αε. By a similar argument as above, it is easy to verify

that under our stated conditions on λ, and assuming α ≥ 1
2 , we have q∗ ≥ (1 − ε), for total defender loss

(1− ε)αε.

2 Section 4 Theorem

Theorem 4. Let f be twice continuously differentiable and x be a strict local minimizer of f over X . Then,

at except on a measure zero set, there exists a convex set I around x such that x∗I(θ) = arg minx∈I∩X f(x, θ)

is differentiable. The gradients of x∗(θ) are given by the gradients of solutions to the local quadratic approx-

imation minx∈X x
T∇2f(x, θ)x+∇f(x, θ).

Proof. By continuity, there exists an open ball around x on which ∇2f(x, θ) is negative definite; let I be

this ball. Restricted to X ∩ I, the optimization problem is convex, and satisfies Slater’s condition by our

assumption on X combined with Lemma 2. Therefore, the KKT conditions are a necessary and sufficient

description of x∗I(θ). We now use this fact to give an explicit expression for the gradients of x∗I(θ). Since the
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equality constraints given by the function h are affine, we represent them as a matrix A, where h(x) = Ax.

The KKT conditions imply that (x,µ,ν) is an optimum if and only if the following equations hold:

g(x) ≤ 0

Ax = 0

µ ≥ 0

µ� g(x)

∇xf(x, θ) + µ>∇g(x) + ν>A = 0

Differentiating through this linear system using the implicit function theorem, as in Amos and Kolter

(2017) and Donti et al. (2017), results in the following expression for the gradients of the optimal solution

with respect to θ:


∂x
∂θ

∂µ
∂θ

∂ν
∂θ

 = −


∇2
xf(x, θ) +

∑nineq

i=1 µi∇2
xg(x)

(
∂g(x)
∂x

)T
AT

diag(µ)
(
∂g(x)
∂x

)
diag(g(x)) 0

A 0 0


−1 

∂∇xf(x,θ)
∂θ

0

0

 (3)

We now note that the above expression depends only on the gradient and Hessian of f , along with the

constraints g. Therefore, differentiating through the KKT conditions of the local quadratic approximation

results in the same expression (since the quadratic approximation is defined exactly to be the second-order

problem with the same gradient and Hessian as the original). This implies that x∗I(θ) is differentiable

whenever the quadratic approximation is differentiable (i.e., whenever the RHS matrix above is invertible).

Note that in the quadratic approximation, we can drop the requirement that x ∈ I since the minmizer

over x ∈ X already lies in I by continuity. Using Theorem 1 of Amos and Kolter (2017), the quadratic

approximation is differentiable except at a measure zero set, proving the theorem.

Lemma 2. Let g1...gm be convex functions and consider the set X = {x : g(x) ≤ 0}. If there is a point

x∗ which satisfies g(x) < 0, then for any point x′ ∈ X , the set X ∩ B(x′, δ) contains a point xint satisfying

g(x) < xint and d(xint, x
′) < δ.
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Proof. By convexity, for any t ∈ [0, 1], the point (1− t)x∗+ tx′ lies in X , and for t < 1, satisfies g((1− t)x∗+

tx′) < 0. Moreoever, for t sufficiently large (but strictly less than 1), we must have d((1− t)x∗+ tx′, x′) < δ,

proving the existence of xint.

3 Experiments

3.1 Experimental Setup

We run 60 trials per parameter combination. Unless it is varied in an experiment, the parameters are:

1. Number of targets = |T | ∈ {8, 24}.

2. Features per target = |y|/|T | = 100.

3. Number of training games = |Dtrain| = 50. We fix the number of test games = |Dtest| = 50.

4. Number of attacks per training game = |A| = 5.

5. Defender resources is the number of defense resources available. We use 3 for 8 targets and 9 for 24.

6. We fix the attacker’s weight on defender coverage to be w = −4, a value chosen because of its resem-

blance to observed attacker w in human subject experiments [1, 2]. All strategies receive access to this

value, which would require the defender to vary her mixed strategies to learn.

7. Historical coverage = phistorical is the coverage generated by Unif, which is fixed for each training

game.

3.2 Additional Graphs

The main purpose of these graphs is to show that 2S receives lower test entropy without regularization, but

much worse defender expected utility. The regularization, while not beneficial from a prediction perspective,

improves decision performance.

4 Significance and Standard Deviation

A paired sample t-test is used to measure significance.

5



8 Targets

24 Targets

Figure 1: DEU−Unif for non-regularized 2S. 2S without regularization receives much worse decision performance
than regularized 2S despite achieving lower test set cross entropy (see Fig. 2).

8 Targets

24 Targets

Figure 2: 2S test CE for non-regularized 2S (green) vs. regularized 2S (red). Regularization worsens test CE for 2S
methods.

Figure 3: DEU(GF) − DEU(2S) with Dropout and early stopping based on a validation set for 24 targets, 100
features, 100 games and 5 attacks. Each point represents one trial. 2S receives worse test cross entropy compared to
the non-regularized case, but better DEU.
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4.1 Synthetic Data

Table 1: 8 Targets, Vary # of Attacks

Attacks p-value std 2S std DF

2 3.8e-15 0.0109 0.0056

4 5.8e-13 0.0098 0.0064

6 8.7e-10 0.0088 0.0071

8 7.7e-06 0.0091 0.0073

10 0.018 0.0096 0.0074

12 0.22 0.0097 0.0068

14 0.87 0.0108 0.0077

16 0.57 0.0115 0.0079

Table 2: 8 Targets, Vary # of Games

Games p-value std 2S std DF

25 0.033 0.0080 0.0075

50 4.0e-10 0.0100 0.0063

75 2.3e-06 0.0130 0.0080

150 0.0093 0.0160 0.0088

Table 3: 8 Targets, Vary # of Features

Features p-value std 2S std DF

10 0.031 0.0153 0.0153

25 1.7e-4 0.0125 0.0107

50 0.65 0.0152 0.0099

100 4.0e-10 0.0100 0.0063

200 1.1e-29 0.0141 0.0058

Table 4: 24 Targets, Vary # of Attacks

Attacks p-value std 2S std DF

2 0.0029 0.02116 0.0071

6 1.5e-4 0.0206 0.0099

10 0.030 0.0226 0.0094

14 0.89 0.0187 0.0120

18 0.75 0.0172 0.0127
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Table 5: 24 Targets, Vary # of Games

Games p-value std 2S std DF

10 0.32 0.0143 0.0087

25 0.62 0.0289 0.0124

50 1.1e-9 0.0291 0.0140

100 1.5e-4 0.0352 0.0148

Table 6: 24 Targets, Vary # of Features

Features p-value std 2S std DF

10 0.42 0.0115 0.0110

25 2.9e-6 0.0120 0.0097

50 9.2e-10 0.0135 0.0088

100 1.6e-5 0.0207 0.0081

200 9.7e-48 0.0164 0.0051

4.2 Human-Subject Data

Table 7: 8 Targets, Vary # of Attacks

Attacks p-value std 2S std DF

1 0.15 0.0070 0.0074

5 0.07 0.0063 0.0102

10 0.51 0.0074 0.0108

20 0.57 0.0070 0.0096

30 0.77 0.0070 0.0090

Table 8: 24 Targets, Vary # of Attacks

Attacks p-value std 2S std DF

1 0.062 0.0067 0.0134

5 0.0012 0.0042 0.0127

10 0.0050 0.0071 0.0127

20 0.0040 0.0055 0.0117

30 0.0023 0.0052 0.0120

8



Table 9: 8 Targets, Vary # of Games

Games p-value std 2S std DF

5 0.0021 0.0072 0.0039

10 0.88 0.0073 0.0061

15 0.24 0.0069 0.0081

20 0.038 0.0079 0.0095

25 0.24 0.0080 0.0106

30 0.38 0.0088 0.0093

Table 10: 24 Targets, Vary # of Games

Games p-value std 2S std DF

5 2.2e-10 0.0049 0.0032

10 2.1e-4 0.0058 0.0062

15 4.7e-4 0.0069 0.0127

20 0.0059 0.0077 0.0123

25 0.025 0.0068 0.0102

30 0.074 0.0077 0.0124
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