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Abstract

Stackelberg security games are a critical tool for maximizing
the utility of limited defense resources to protect important
targets from an intelligent adversary. Motivated by green se-
curity, where the defender may only observe an adversary’s
response to defense on a limited set of targets, we study the
problem of learning a defense that generalizes well to a new
set of targets with novel feature values and combinations. Tra-
ditionally, this problem has been addressed via a two-stage
approach where an adversary model is trained to maximize
predictive accuracy without considering the defender’s opti-
mization problem. We develop an end-to-end game-focused
approach, where the adversary model is trained to maximize
a surrogate for the defender’s expected utility. We show both
in theory and experimental results that our game-focused
approach achieves higher defender expected utility than the
two-stage alternative when there is limited data.

1 Introduction
Many real-world settings call for allocating limited de-
fender resources against a strategic adversary, such as
protecting public infrastructure (Gan, An, and Vorobey-
chik 2015), transportation networks (Okamoto, Hazon, and
Sycara 2012), large public events (Yin, An, and Jain 2014),
urban crime (Zhang, Sinha, and Tambe 2015), and green
security (Fang, Stone, and Tambe 2015). Stackelberg secu-
rity games (SSGs) are a critical framework for computing
defender strategies that maximize expected defender util-
ity to protect important targets from an intelligent adversary
(Tambe 2011).

In many SSG settings, the adversary’s preferences over
targets are not known a priori. In early work, the adversary’s
preferences were estimated via the judgments of human ex-
perts (Tambe 2011). In domains where there are many in-
teractions with the adversary, we can leverage this history
using machine learning instead. This line of work, started
by Letchford et al. (2009), has received extensive attention
in recent years (see related work).

We use protecting wildlife from poaching (Fang, Stone,
and Tambe 2015) as a motivating example. The adversary’s
(poacher’s) behavior is observable because snares are left
behind, which rangers aim to remove (see Fig. 1a). Various
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features such as animal counts, distance to the edge of the
park, weather and time of year may affect how attractive a
particular target is to the adversary. The training data con-
sists of adversary behavior in the context of particular sets
of targets, and our objective is to achieve a high defender
utility when we are playing against the same adversary and
new sets of targets. For the problem of poaching prevention,
Gholami et al. (2018) use around 20 features per target and
observe tens of thousands of distinct targets (i.e., combina-
tions of feature values). Rangers patrol a small portion of the
park each day and aim to predict poacher behavior across a
large park consisting of targets with novel feature values.

The standard approach to the problem breaks it into two
stages. In the first, the adversary model is fit to the histor-
ical data to minimize an accuracy-based loss function, and
in the second, the defender covers the targets (via a mixed
strategy) to maximize utility against the learned model. It is
true that, in a worst-case analysis, a model that is more ac-
curate in a global sense induces a better coverage (see Sinha
et al. (2016) and Haghtalab et al. (2016)), but a model that
accurately predicts the relative values of “important” targets
may achieve high defender utility with weak global accu-
racy. For example, in a game with many low-value targets,
the estimates of the values of the low-value targets can be
wildly inaccurate and still yield a high defender utility (see
Sec. 3 for an example).

In our game-focused approach, in contrast to a two-stage
approach, we focus on learning a model that yields a high
defender expected utility from the start. We train a predic-
tive model end-to-end (i.e., considering the effects of the op-
timization problem) using an estimate of defender expected
utility as our loss function. This approach has the advantage
of focusing learning on “important” targets that have a large
impact on the defender expected utility, and not being dis-
tracted by irrelevant targets (e.g., those with low value for
both the attacker and defender). For example, in our human
subject data experiments, two-stage achieves 2–20% lower
cross entropy, but worse defender expected utility. Perform-
ing game-focused training requires us to overcome several
technical challenges, including forming counterfactual esti-
mates of the defender’s expected utility and differentiating
through the solution of a nonconvex optimization problem.

In summary, our contributions are: First, we provide a the-
oretical justification for why our game-focused approach can



outperform two-stage approaches in SSGs. Second, we over-
come technical challenges to develop a game-focused learn-
ing pipeline for SSGs. Third, we test our approach on a com-
bination of synthetic and human subject data and show that
game-focused learning outperforms a two-stage approach in
settings where the amount of data available is small and
when there is wide variation in the adversary’s values for
the targets.

Related Work. There is a rich literature on SSGs, rang-
ing from uncertain observability (Korzhyk, Conitzer, and
Parr 2011) to disguised defender resources (Guo et al.
2017) to extensive-form models (Cermak et al. 2016) to
patrolling on graphs (Basilico, Gatti, and Amigoni 2012;
Basilico, De Nittis, and Gatti 2017). In particular, learning
to maximize the defender’s payoff from repeated play has
been a subject of extensive study. It is important to distin-
guish between the active learning case (Letchford, Conitzer,
and Munagala 2009; Xu, Tran-Thanh, and Jennings 2016;
Blum, Haghtalab, and Procaccia 2017), where the defender
may gather information through her choice of strategy, and
the passive case, where the defender does not have control
over the training data. We consider each case to be valu-
able but focus on the passive case because we believe it is
encountered more frequently in domains of interest. In the
anti-poaching setting, parks often have historical data that
far exceeds what can be actively collected in the short term.

Bounded rationality models are a critical component
of the SSG literature because they allow the defender to
achieve higher utilities against many realistic attackers. They
have been the subject of extensive study since their intro-
duction by Pita et al. (2010) (e.g., Cui and John (2014) and
Abbasi et al. (2016), who develop a distinct line of work,
inspired by psychology). We focus on the quantal response
(QR) (Yang et al. 2013) model and especially the subjec-
tive utility quantal response (SUQR) model (Nguyen et al.
2013). SUQR is simple, widely used and has been shown to
be effective in practice.

Sinha et al. (2016) and Haghtalab et al. (2016) provide
probabilistic bounds on the learning error for two-stage ap-
proaches for generalized SUQR attackers in the passive and
weakly active cases, respectively. Both works translate these
bounds into the guarantees on the defender’s expected util-
ity in the worst case. Our focus is on the orthogonal issue of
how to train any differentiable predictive model end-to-end
with gradient descent, including deep learning architectures
that are the state of the art for many learning tasks. These
methods can scale to many features and complicated rela-
tionships and are one of the main appeals of two-stage ap-
proaches. We use SUQR implemented on a neural network
as an illustrative example, but our approach can be applied
to other bounded rationality models, as we discuss in Sec. 4.

Outside of SSGs, Ling et al. (2018; 2019) use a dif-
ferentiable QR equilibrium solver to reconstruct the pay-
offs of both players in a game from observed play. Hart-
ford et al. (2016) and Wright and Leyton-Brown (2017)
study the problem of predicting play in unseen two-player
simultaneous-move games with a small number of actions

per player, and Hartford et al. (2016) build a deep learning
architecture for this purpose. These works focus on predic-
tion rather than optimization.

We briefly discuss related work in end-to-end learning for
decision-making in non-game-theoretic contexts (see Donti
and Kolter (2017) for a more complete discussion). New
technical issues arise due to the presence of the adversary,
such as counterfactual estimation and nonconvexity. In their
study of parameter sensitivity, Rockafellar and Wets (2009)
provide a comprehensive theoretical analysis of differenti-
ating through optimization. Bengio (1997) was first to train
a learning system for a more complex task by directly dif-
ferentiating through the outcome of applying parameterized
rules. Amos and Kolter (2017) provide analytical deriva-
tives for constrained convex problems. This analytic ap-
proach is extended to stochastic optimization by Donti et
al. (2017) and to submodular optimization by Wilder et
al. (2019). Demirovic et al. (2019) provide a theoretically
optimal framework for ranking problems with linear objec-
tives.

2 Setting
Stackelberg Security Games (SSGs). Our focus is on op-
timizing defender strategies for SSGs, which describe the
problem of protecting a set of targets given limited de-
fense resources and constraints on how the resources may
be deployed (Tambe 2011). Formally, an SSG is a tuple
{T ,ud,ua, Cd}, where T is a set of targets, ud : T →
IR≤0 is the defender’s payoff if each target is successfully
attacked, ua : T → IR≥0 is the attacker’s, and Cd is the
set of constraints the defender’s strategy must satisfy. Both
players receive a payoff of zero when the attacker attacks a
target that is defended.

The game has two time steps: the defender computes a
mixed strategy that satisfies the constraints Cd, which in-
duces a marginal coverage probability (or coverage) p =
{pi : i ∈ T }. The attacker’s attack function q determines
which target is attacked, inducing an attack probability for
each target. The defender seeks to maximize her expected
utility:

max
p satisfying Cd

DEU(p; q) =

max
p satisfying Cd

∑
i∈T

(1− pi)qi(ua,p)ud(i). (1)

The attacker’s q function can represent a rational attacker,
e.g., qi(p,ua) = 1 if i = argmaxj∈T (1− pj)ua(j) else 0,
or a boundedly rational attacker. A QR attacker (McKelvey
and Palfrey 1995) attacks each target with probability pro-
portional to the exponential of its payoff scaled by a constant
λ, i.e., qi(p) ∝ exp(λ(1 − pi)ua). An SUQR (Nguyen et
al. 2013) attacker attacks each target with probability pro-
portional to the exponential of an attractiveness function:

qi(p,y) ∝ exp(wpi + φ(yi)), (2)

where yi is a vector of features of target i and w < 0 is a
constant. We call φ the target value function. We focus our
effort on learning φ because w can easily be learned using
existing techniques, such as the maximum likelihood esti-
mation (MLE) approach of Sinha et al. (2016), assuming we



(a) Snares removed by rangers
in Srepok National Park, Cam-
bodia.

(b) MLE estimate of w con-
verges quickly to the true value
of −4. Error bars indicate one
standard deviation.

have the ability to play different defender strategies against
the same set of targets. MLE estimates converge rapidly, as
shown by Fig. 1b, which demonstrates learning in an eight-
target game, averaged over 20 trials. Once we have an accu-
rate w estimate, it can be transferred to all games against the
same adversary.

Learning in SSGs. We consider the problem of learning
to play against an attacker with an unknown attack function
q. We observe attacks made by the adversary against sets of
targets with differing features, and our goal is to generalize
to new sets of targets with unseen feature values.

Formally, let 〈q, Cd, Dtrain, Dtest〉 be an instance of a
Stackelberg security game with latent attack function (SSG-
LA). q, which is not observed by the defender, is the true
mapping from the features and coverage of each target to
the probability that the attacker attacks that target. Cd is the
set of constraints that a mixed strategy defense must sat-
isfy for the defender. Dtrain are training games of the form
〈T ,y,A,ud,phistorical〉, where T is the set of targets, and y,
A, ud and phistorical are the features, observed attacks, de-
fender’s utility function, and historical coverage probabili-
ties, respectively, for each target i ∈ T . Dtest are test games
〈T ,y,ud〉, each containing a set of targets and the associ-
ated features and defender values for each target. We assume
that all games are drawn i.i.d. In a green security setting, the
training games represent the results of patrols on limited ar-
eas of the park and the test games represent the entire park.

The defender’s goal is to select a coverage function x that
takes the parameters of each test game as input and maxi-
mizes her expected utility across the test games against the
attacker’s true q:

max
x satisfying Cd

E
〈T ,y,ud〉∼Dtest

[DEU(x(T ,y,ud); q)] . (3)

To achieve this, she can observe the attacker’s behavior in
the training data and learn how he values different combina-
tions of features.

Two-Stage Approach. A standard two-stage approach to
the defender’s problem is to estimate the attacker’s q func-
tion from the training data and optimize against the estimate
during testing. This process, which is illustrated in the top
of Fig. 2, resembles multiclass classification where the tar-
gets are the classes: the inputs are the target features and
historical coverages, and the output is a distribution over the
predicted attack. Specifically, the defender fits a function q̂
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Figure 2: Comparison between a standard two-stage ap-
proach to training an adversary model and our game-focused
approach.

to the training data that minimizes a loss function. Using the
cross entropy, the loss for a particular training example is

L(q̂(y,phistorical),A) = −
∑
i∈T

q̃ log(q̂i(y,phistorical)), (4)

where q̃ = Ai

|A| is the empirical attack distribution andAi is
the number of historical attacks that were observed on target
i. Note that we use hats to indicate model outputs and tildes
to indicate the ground truth. For each test game 〈T ,y,ud〉,
coverage is selected by maximizing the defender’s expected
utility assuming the attack function is q̂:

max
x satisfying Cd

DEU(x(T ,y,ud); q̂). (5)

3 Impact of Two-Stage Learning on DEU
We begin by developing intuitions about when an inaccu-
rate predictive model can lead to high defender expected
utility. We study the rational attacker case for simplicity—
results in the rational case can be directly translated to the
QR case (which is a smooth version of rationality). Con-
sider an SSG with three targets and a single defense re-
source. The defender has equal value for all three and the at-
tacker has true values of (0.4, 0.4, 0.2), yielding an optimal
coverage of p∗ = (0.5, 0.5, 0.0). Suppose the defender esti-
mates the attacker’s target values to be (0.5, 0.5, 0.0). This
estimate yields the optimal coverage, despite overestimating
the value of the first two targets by 25% and underestimat-
ing the value of the third by 100%. In contrast, the estimate
(0.4− ε, 0.4− ε, 0.2 + 2ε) does not yield optimal coverage
despite being within ε of the ground truth target values.

We characterize the extent to which two predictive mod-
els with the same accuracy-based loss can differ in terms



of the defender’s expected utility for rational attacker, two-
target SSGs with both equal and zero-sum defender target
values. From the perspective of a two-stage approach with an
accuracy-based loss, any two models with the same loss are
considered equally good. In contrast, a game-focused model
with an oracle for the defender’s expected utility would au-
tomatically prefer a model with higher defender utility. We
additionally extend the latter result to QR attackers.

The theory shows two key points. First, the error in esti-
mates of attacker’s utilities can have highly variable effects
on the defender’s expected utility. As we saw in the exam-
ple, estimation error can have no effect in certain cases. The
defender’s preference for the distribution of estimation er-
ror depends on both the relative values of the targets and the
correlation between the target values of the attacker and de-
fender. These properties are challenging to replicate in hand-
tuned two-stage approaches. Second, game-focused learning
is more beneficial when the attacker’s true values across tar-
gets exhibit greater variance. We return to this intuition in
our experiments.

We begin with the case where the defender values all tar-
gets equally (and recall that we assume that both the attacker
and defender receive a payoff of zero for an unsuccessful at-
tack). For complete proofs of all theorems, see the full ver-
sion of the paper.
Theorem 1 (Equal defender values). Consider a two-target
SSG with a rational attacker, equal defender values for each
target, and a single defense resource to allocate, which is
not subject to scheduling constraints (i.e., any nonnegative
marginal coverage that sums to one is feasible). Let z0 ≥ z1
be the attacker’s values for the targets, which are observed
by the attacker, but not the defender, and we assume w.l.o.g.
are non-negative and sum to 1. Let the defender’s values for
the targets be -1 for each.

The defender has an estimate of the attacker’s values
(ẑ0, ẑ1) with mean squared error (MSE) ε2. Suppose the
defender optimizes coverage against this estimate. If ε2 ≤
(1− z0)2 and ε2 ≤ (z0− z1)2, the ratio between the highest
DEU under the estimate of (ẑ0, ẑ1) with MSE ε2 and the
lowest DEU is:

z0 + ε

z1 + ε
(6)

Proof Sketch. There are two normalized estimates of the
attacker’s values that have MSE ε2: (z0 + ε, z1 − ε) and
(z0 − ε, z1 + ε). The attacker will attack the target whose
value the defender underestimates. The defender prefers the
latter case, where the attacker selects the higher value target,
because this target has more coverage and successful attacks
have the same cost on both targets.

Thus, in the equal value case, it is generally better for
the defender to underestimate the attacker’s values for high-
value targets. This dynamic is reversed in the zero-sum case.
Theorem 2 (Zero-sum). Consider the same setting as
Thm. 1 except the utilities are zero-sum. If ε2 ≤ (1 − z0)2,
the ratio between the highest DEU under the estimate of
(ẑ0, ẑ1) with MSE ε2 and the lowest DEU is:

(1− (z1 − ε))z1
(1− (z0 − ε))z0

(7)

Proof Sketch. Similarly to Thm. 1, there are two value es-
timates with MSE ε2. The defender prefers the case where
she underestimates the attacker’s value for the lower value
target, inducing the attacker to attack it. The lower cost of
failures outweighs the attacker getting caught less often.

The theory can be extended to QR attackers. In the case
of Thm. 2, the defender can lose value z0ε, or ε as z0 → 1,
compared to the optimum because of an unfavorable distri-
bution of estimation error. We show that this carries over to
a boundedly rational QR attacker, with the degree of loss
converging towards the rational case as λ increases.
Theorem 3 (Zero-sum, QR attacker). Consider the setting
of Thm. 2, but in the case of a QR attacker. For any 0 ≤ α ≤
1, if λ ≥ 2

(1−α)ε log
1

(1−α)ε , the defender’s loss compared to
the optimum may be as much as α(1 − ε)ε under a target
value estimate with MSE ε2.

4 Game-Focused Learning in SSGs
We now present our approach to game-focused learning in
SSGs. The key idea is to embed the defender optimization
problem into training and compute gradients of DEU with
respect to the model’s predictions, which requires us to over-
come two technical challenges. First, in the previous sec-
tion, we assumed we had access to an exact oracle for the
defender’s expected utility, but in practice, this is a coun-
terfactual estimation problem. Second, our defender’s op-
timization is nonconvex and new machinery is required to
calculate the derivative of the solution w.r.t. its parameters.
We illustrate our approach in the bottom of Fig. 2.

We begin with notation. As we have discussed, the stan-
dard two-stage approach may fall short when the loss func-
tion (e.g., cross entropy) does not align with the true goal of
maximizing expected utility. Ultimately, the defender would
like to learn a function mω which takes a set of targets and
associated features as input and produces q̂ as output, which
then induces a coverage with high expected utility. Note that
from a utility-theoretic perspective, it does not matter how
accurate q̂ is, only that the induced coverage has high ex-
pected utility. Let

x∗(q̂) = argmax
x satisfying Cd

DEU(x; q̂) (8)

be the optimal defender coverage function against an adver-
sary with attack function q̂. Our goal is to find q̂ which max-
imizes

DEU(q̂) = E
〈T ,y,ud〉∼Dtest

[DEU(x∗(q̂); q)] , (9)

DEU(q̂) is the ground truth expected utility of coverage
x∗(q̂) (recall that q is the attacker’s true response func-
tion). While we do not have access to Dtest, we can estimate
Expr. 9 using samples from Dtrain. We would like to calcu-
late the derivative of Expr 9 w.r.t. q̂ to use in model training.
Using the chain rule:

∂DEU(q̂)

∂q̂
= E
〈T ,y,ud〉∼Dtrain

[
∂DEU(x∗(q̂); q)

∂x∗(q̂)

∂x∗(q̂)

∂q̂

]
.

Here, ∂DEU(x∗(q̂);q)
∂x∗(q̂) describes how the defender’s true util-

ity with respect to q changes as a function of her strategy x∗,



which is a counterfactual question because we only observe
the defender playing a single strategy in this training game.
∂x∗(q̂)
∂q̂ describes how x∗ depends on the estimated attack

function q̂, which requires differentiating through the non-
convex optimization problem in Eq. 8. If we had a means of
calculating both terms, we could then estimate ∂DEU(q̂)

∂q̂ by
sampling games from Dtrain and computing gradients on the
samples. If q̂ is itself implemented in a differentiable man-
ner (e.g., a neural network), the entire system may be trained
end-to-end via gradient descent. We address each of the two
terms separately.

Counterfactual Adversary Estimates
We want to calculate ∂DEU(x∗(q̂);q)

∂x∗(q̂) which describes how the
defender’s true utility with respect to q depends on her strat-
egy x∗. Computing this term requires a counterfactual esti-
mate of how the attacker would react to a different coverage
vector than the historical one. We find that typical datasets
only contain a set of sampled attacker responses to a particu-
lar historical defender mixed strategy or a small set of mixed
strategies. Previous work on end-to-end learning for deci-
sion problems (Bengio 1997; Donti, Amos, and Kolter 2017;
Wilder, Dilkina, and Tambe 2019; Demirovic et al. 2019) as-
sumes that the historical data specifies the utility of any pos-
sible decision, but this assumption does not hold in SSGs
because they are interactions between strategic agents.

Our approach relies on the adversary using a bounded ra-
tionality model that is stochastic and decomposable. It is
generally the case that boundedly rational adversaries com-
plicate the process of learning and optimizing in SSGs, e.g.,
because they cause the optimization to become nonconvex
and they add uncertainty to the defender’s adversary model.
However, bounded rationality is critical to our counterfac-
tual reasoning strategy because boundedly rational adver-
saries reveal information about their entire ranking of tar-
gets over repeated games against the same defender strat-
egy. For example, consider a three-target game where the
defender has covered all three targets equally. QR attack-
ers attack each target proportionally to the expected utility it
provides, eventually revealing the attacker’s relative utilities
across all of the targets under that particular defender cov-
erage. Without the stochasticity, we would unable to learn
anything other than the attacker’s most preferred target.

The resulting target value estimates are in the context of
one particular defender strategy. To estimate the attacker’s
response to any defender coverage, we need to substitute
the historical coverage for an arbitrary one. At first glance,
this may seem impossible for a stochastic, bounded ratio-
nality model because the attacker could have an arbitrary
response to coverage. If we had a rational attacker instead,
with known target values, we could compute his reaction to
an arbitrary defender coverage, but we could not estimate
his relative values for each target (as previously discussed).
Here we exploit the decomposability of many bounded ra-
tionality models: the impact of the defender’s coverage can
be separated from the values of the targets.

We develop an illustrative example of the pipeline for
SUQR. We observe samples from the attack distribution q,

where for SUQR, qi ∝ exp(wpi + φ(yi)). Because we
can estimate qi from the empirical attack frequencies and
the term wpi is known (see Sec. 2), we can invert the exp
function to obtain an estimate of φ(yi). Formally, this cor-
responds to setting φ̂(yi) to the MLE under the empirical
attack distribution:
φ̂(yi) = argmax

φ

∏
a∈A

Pr(Categorical(exp(wpi + φ)) = a).

By exploiting decomposability, we derive relative target
value estimates that can be used to estimate the attacker’s
behavior under an arbitrary coverage. Our estimates have
two key limitations. First, they do not provide us with any
information about the φ function for values other than yi
and second, they are unique only up to a constant additive
factor. Despite these limitations, they suffice to allow us to
simulate the defender’s expected utility for any training data
point 〈T ,y,A,ud,phistorical〉 as∑

i∈T

(1− x∗(q̂)i) exp(wx∗(q̂)i + φ̂(yi))ud(i). (10)

We briefly discuss two issues that arise when applying this
procedure to other bounded rationality models. First, the
model needs to provide meaningful φ̂ estimates, which is
where the rational attacker model fails. Second, the model
needs to be decomposable into the effects of coverage and
the inherent attractiveness of the targets, and the parame-
ters of this decomposition need to be easily estimable (as we
show is the case for SUQR in Sec. 2). Most models satisfy
this condition, including SHARP (Kar et al. 2016), PT and
QBRM (Abbasi et al. 2015).

Gradients of Nonconvex Optimization
The optimization problem which produces x∗(q̂) is typi-
cally nonconvex when the adversary is boundedly rational.
This complicates the process of differentiating through the
defender problem to obtain ∂x∗(q̂)

∂q̂ , as previous approaches
rely on either a convex optimization problem (Donti, Amos,
and Kolter 2017) or a cleverly chosen convex surrogate for a
nonconvex problem (Wilder, Dilkina, and Tambe 2019). In
contrast, our approach produces correct gradients for many
nonconvex problems. The key idea is to fit a quadratic pro-
gram around the optimal point returned by a blackbox non-
convex solver. Intuitively, this works well when the local
neighborhood is, in fact, convex, and fortunately, this is the
case for many optimization problems against boundedly ra-
tional attackers.

Specifically, we consider the generic problem
minx∈X f(x, θ) where f is a (potentially noncon-
vex) objective which depends on a learned param-
eter θ. X is a feasible set that is representable as
{x : g1(x), . . . , gm(x) ≤ 0, h1(x), . . . , h`(x) = 0}
for some convex functions g1, . . . , gm and affine functions
h1, . . . , h`. We assume there exists some x ∈ X with
g(x) < 0, where g is the vector of constraints. In SSGs, f
is the defender objective DEU, θ is the attack function q̂,
and X is the set of x satisfying Cd. We assume that f is
twice continuously differentiable. These two assumptions
capture smooth nonconvex problems over a nondegenerate
convex feasible set.



Suppose that we can obtain a local optimum of f . For-
mally, we say that x is a strict local minimizer of f if (1)
there exist µ ∈ Rm+ and ν ∈ R` such that ∇xf(x, θ) +

µ>∇g(x) + ν>∇h(x) = 0 and µ � g(x) = 0 and (2)
∇2f(x, θ) ≺ 0. Intuitively, the first condition is first-order
stationarity, where µ and ν are dual multipliers for the con-
straints, while the second condition says that the objective
is strictly convex at x (i.e., we have a strict local minimum,
not a plateau or saddle point). We prove the following:

Theorem 4. Let x be a strict local minimizer of f over X .
Then, except on a measure zero set, there exists a convex
set I around x such that x∗I(θ) = argminx∈I∩X f(x, θ)
is differentiable. The gradients of x∗I(θ) with respect to θ
are given by the gradients of solutions to the local quadratic
approximation minx∈X 1

2x
>∇2f(x, θ)x+ x>∇f(x, θ).

This states that the local minimizer within the region out-
put by the nonconvex solver varies smoothly with θ, and we
can obtain gradients of it by applying existing techniques
(Amos and Kolter 2017) to the local quadratic approxima-
tion. It is easy to verify that the defender utility maximiza-
tion problem for an SUQR attacker satisfies the assumptions
of Thm. 4 since the objective is smooth and typical con-
straint sets for SSGs are polytopes with nonempty interior
(see (Xu 2016) for a list of examples). Our approach is quite
general and applies to a range of behavioral models such
as QR, SUQR, and SHARP since the defender optimization
problem remains smooth in all.

5 Experiments
We begin by comparing the performance of game-focused
and two-stage approaches across a range of settings both
simulated and real. We find that game-focused learning out-
performs two-stage when the number of training games is
low, the number of attacks observed in each training game is
low, and the number of target features is high. As the amount
of training data increases, two-stage starts catching up as it
is able to reconstruct the attacker model accurately. We ded-
icate the second part of the experiments section to investi-
gating three hypotheses for why game-focused achieves su-
perior performance.

Defender Strategies. We compare the following three de-
fender strategies: Uniform attacker values (UNIF) is a base-
line where the defender assumes that the attacker’s value for
all targets is equal and maximizes DEU under that assump-
tion. Game-focused (GF) is our game-focused approach.
Two-stage (2S) is a standard two-stage approach, where a
neural network is fit to predict attacks, minimizing cross-
entropy on the training data. Game-tuned two-stage (2S-GT)
is a regularized approach that aims to maximize the de-
fender’s expected utility when the amount of data is small. It
uses Dropout (Srivastava et al. 2014) and a validation set for
early stopping. All three methods use the same architecture
for the prediction neural network: a fully-connected single-
layer network with 200 hidden units on the synthetic data
and 10 hidden units on the simpler human subject data.

Experiments in Simulation
We perform experiments against an attacker with an SUQR
target attractiveness function. Raw features values are sam-
pled i.i.d. from the uniform distribution over [-10, 10]. Be-
cause it is necessary that the attacker target value function
is a function of the features, we sample the attacker and de-
fender target value functions by generating a random neural
network for the attacker and defender. Our other parameter
settings are chosen to align with Nguyen et al.’s (2013) hu-
man subject data. We rescale defender values to be between
-10 and 0.

We choose instance parameters to illustrate the differ-
ences in performance between decision-focused and two-
stage approaches. We run 28 trials per parameter combina-
tion. Unless it is varied in an experiment, the parameters are:

1. Number of targets = |T | ∈ {8, 24}.
2. Features per target = |y|/|T | = 100.
3. Number of training games = |Dtrain| = 50. We fix the

number of test games = |Dtest| = 50.
4. Number of attacks per training game = |A| = 5.
5. Defender resources is the number of defense resources

available. We use 3 for 8 targets and 9 for 24.
6. We fix the attacker’s weight on defender coverage to be
w = −4 (see Eq. 2), a value chosen because of its resem-
blance to observed attacker w in human subject experi-
ments (Nguyen et al. 2013; Yang et al. 2014). All strate-
gies receive access to this value, which would require the
defender to vary her mixed strategies to learn.

7. Historical coverage = phistorical is the coverage generated
by UNIF, which is fixed for each training game.

Results Fig. 3 shows the results of the experiments in sim-
ulation, comparing the defender strategies across a variety of
problem types. GF yields higher DEU than the other meth-
ods across most tested parameter settings and GF especially
excels in problems where learning is more difficult—more
features, fewer training games, and fewer attacks.

The vertical axis of each graph is median DEU minus
the DEU achieved by UNIF. Because UNIF does not per-
form learning, its DEU is unaffected by the horizontal axis
parameter variation, which only affects the difficulty of the
learning problem, not the difficulty of the game. The average
DEU(UNIF) = −2.5 for 8 targets and DEU(UNIF) = −4.2
for 24.

The left column of Fig. 3 compares DEU as the number of
attacks observed per game increases. For both 8 and 24 tar-
gets, GF receives higher DEU than the other methods across
the tested range. We provide the results of paired sample T-
test between GF and 2S-GT in the appendix, which shows
that the differences are statistically significant at p < 0.05.
The center column of Fig. 3 compares DEU as the number
of training games increases. Likewise, GF outperforms the
other methods. The right column of Fig. 3 compares DEU
as the number of features decreases. Here we see GF outper-
forming 2S-GT when the number of features is large (and
thus, the learning problem is harder) and vice versa when
the number of features is small.



8 Targets

24 Targets

Figure 3: DEU − UNIF across the three strategies as we vary the number of features, number of training games and number
of observed attacks per training game. When not varied, the parameter values are 100 features, 50 training games and 5 attacks
per game. GF receives higher DEU than 2S for most parameter values.

Figure 4: DEU− UNIF from human subject data for 8 and 24 targets, as the number of attacks per training game is varied and
number of training games is varied. GF receives higher DEU for most settings, especially for 24-target games.

In all three columns, 2S-GT catches up to GF as the learn-
ing problem becomes easier. With enough data, the gap be-
tween the two methods closes as both approach optimality.
This fact is reflected by Thms. 1 and 2: as the model error
ε decreases, the DEU difference between the best and worst
model with error ε decreases. We observe a standard rela-
tionship between 2S and 2S-GT: the model that is tuned for
small data mostly performs better. The untuned 2S model
benefits from increasing the number of training games, but
increasing the number of attacks or decreasing the number
of features has little effect.

Experiments on Human Subject Data
We use data from human subject experiments performed by
Nguyen et al. (2013). The data consists of an 8-target set-
ting with 3 defender resources and a 24-target setting with
9. Each setting has 44 games. Historical coverage is the op-
timal coverage assuming a QR attacker with λ = 1. For each
game, 30-45 attacks by human subjects are recorded.

We use the attacker coverage parameter w calculated by
Nguyen et al. (2013): −8.23. We use MLE to calculate the
ground truth target values for the test games. There are four
features for each target: attacker’s reward and defender’s
penalty for a successful attack, attacker’s penalty and de-
fender’s reward for a failed attack.

Results We find that GF receives higher DEU than 2S-GT
on the human subject data (as 2s-GT outperformed 2S in the
synthetic data case, we do not present results for 2s here).
The differences are statistically significant at p < 0.05 in
the 24-target case and at the border of significance in the

8-target case. Fig. 4 summarizes our results as the number
of training attacks per target and games are varied. Varying
the number of attacks, for 8 targets, GF achieves its highest
percentage improvement in DEU at 5 attacks where it re-
ceives 28% more than 2S-GT. For 24 targets, GF achieves
its largest improvement of 66% more DEU than 2S at 1 at-
tack. Varying the number of games, GF outperforms 2S-GT
except for fewer than 10 training games in the 8-target case.
The percentage advantage is greatest for 8-target games at 20
training games (33%) and at 2 training games for 24-target
games, where 2S-GT barely outperforms UNIF.

Unlike in the synthetic data experiments, we do not ob-
serve 2S-GT catching up to GF using the data that we allo-
cate for training. A key difference between the human sub-
ject data experiments and the synthetic data experiments is
the presence of noise in the former. In the latter, there exists
a ground-truth attractiveness function that, if learned, would
reproduce the attack distribution exactly. With human sub-
ject data, we do not expect this to be the case: there are other
features that are not available to the model such as the posi-
tion of the target on the screen and learning effects.

Discussion

Our experimental results establish that GF outperforms the
two-stage approaches under a variety of instance parame-
ter settings. We now focus on understanding why GF pro-
duces predictions that lead to superior defender utility. We
study three hypotheses. We test our hypothesis with 24 tar-
gets, 100 features, 100 games, and 5 attacks unless specified
otherwise.



Hypothesis 1: GF makes better predictions. A natural
starting point is whether the differences in performance can
be explained purely by the quality of predictions. This is
the standard position in the literature—better predictive ad-
versary models lead to higher defender expected utility. It
would be surprising if this hypothesis were true because GF
does not explicitly optimize for prediction accuracy and two-
stage does.

The human subject experiments produce strong evidence
against this hypothesis. Even when GF has a large advantage
in defender expected utility, it has test cross entropy that is
2–20% higher than 2s-GT.

Hypothesis 2: GF handles model uncertainty better.
From a Bayesian perspective, the training data induce a pos-
terior distribution over the potential adversary attractiveness
functions. Thus, the defender’s ideal optimization, i.e., the
one that yields the highest expected utility, is stochastic over
this distribution of attackers. Because GF is an end-to-end
approach, it may handle the uncertainty over attacker mod-
els better by learning to represent the distribution as a point
estimate that induces the correct solution. We test this hy-
pothesis by using the 2S test cross entropy as a surrogate for
the uncertainty in the attacker model. Low cross entropy in-
dicates that the model learned by 2S was close to the true
model, and this indicates that there is little advantage to tak-
ing model uncertainty into account in the optimization. We
would hypothesize that GF would be weaker in compari-
son when this occurs and stronger when 2S cross entropy
is higher.

The results are shown on the left side of Fig. 5. The x-
axis shows 2S test cross entropy and the y-axis is the gap
between GF and 2S. This hypothesis fails: when there is less
model uncertainty, GF performs better relative to 2S.

Hypothesis 3: GF learns more accurate models for more
important targets. The different loss function used by GF
may induce a different distribution of the errors across tar-
gets. Because errors on more important targets have a greater
impact on the defender’s expected utility, we hypothesize
that GF will make smaller errors on important targets and
larger errors on unimportant ones relative to 2S.

Fig. 6 supports this hypothesis. The x-axis is the target’s
predicted contribution to DEU under the coverage selected
by the defender strategy, and the y-axis shows the absolute
error in the predicted probability that the attacker attacks that
target. GF has larger errors for targets that contribute less to
DEU and smaller errors for targets that contribute more.

6 Conclusion
We advance the state of the art in learning adversary models
in SSGs with the goal of maximizing defender expected util-
ity. In contrast to past approaches, our approach allows mod-
ern deep learning architectures to be trained, and we out-
perform even two-stage approaches that have been tuned to
maximize the defender’s expected utility. We investigate em-
pirically and theoretically why our game-focused approach

Figure 5: DEU(GF)−DEU(2S). Each point represents one
trial. GF performs better when 2S has lower test cross en-
tropy and when target values are less uniform.

Figure 6: Target contribution to DEU vs. the absolute error in
the predicted attacker q. GF (left) has lower estimation errors
for targets with high DEU contributions and higher errors for
targets with low DEU contributions. 2S (right) estimation
errors do not vary with target importance.

outperforms two-stage and find that harder decision prob-
lems lead to better game-focused performance. We believe
that our conclusions have important consequences for fu-
ture research and that our game-focused approach can be
extended to a variety of SSG models where smooth noncon-
vex objectives and polytope feasible regions are common.
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