
Efficient Coordinated Power Distribution on Private Infrastructure

by

Andrew Perrault

A thesis submitted in conformity with the requirements
for the degree of Master of Science

Graduate Department of Computer Science
University of Toronto

c© Copyright 2013 by Andrew Perrault



Abstract

Efficient Coordinated Power Distribution on Private Infrastructure

Andrew Perrault

Master of Science

Graduate Department of Computer Science

University of Toronto

2013

Due to the design of current power distribution networks, it will become increasingly attractive for

agents to generate their own power (distributed generation) and to construct private infrastructure

(e.g., transmission lines) to exchange power with others nearby without using the main public grid. We

show that such private transactions may increase overall load on the network because of the increased

distance that power must flow from generation sources, thus increasing transmission loss. We present a

coordination scheme that allows centralized control of private infrastructure while satisfying participation

constraints and budget balance. Experiments show that our scheme reduces transmission losses by 4-5%

when there are only a constant number of private lines and by 55%-60% when the number of private

lines is proportional to the number of agents. These results hold even when there is only a small amount

of distributed generation.
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Chapter 1

Introduction

The smart grid can be roughly defined as an augmented electrical grid that gathers information about

its own operation—specifically the behavior of consumers and producers—to automatically improve ef-

ficiency and reliability. Utility companies have been the primary driver of development of the smart

grid thus far, particularly because they see the opportunity to replace monitoring tasks typically under-

taken by people (e.g., reading electricity meters, looking for damage to transmission lines, monitoring

transformers) with electronic sensing and control devices that are accessible from a central location.

This stage of development is still ongoing—smart residential meters themselves are still only available in

relatively few places—but access to comprehensive grid data will provide exciting research opportunities

in many fields.

While much smart grid research has focused on the development of the infrastructure necessary to

monitor operation, full realization of the smart grid requires intelligent control and incentive schemes

to make the best use of information so gathered [17]. As a consequence, smart grid research should

attract the attention of the computer science, artificial intelligence, machine learning and computational

economics communities. We briefly list some of the interesting problems in the area.

Recommender systems [3] can use large amounts of user activity data to make behavior suggestions

to users. Historically, they have been primarily used by web-based businesses that both have access to

user activity data and communication capabilities that can be cheaply customized for each user. Data

collected from the smart grid will allow utilities to make specific behavior recommendations to households

and businesses; however, these systems will be challenging to design as there will be an immense amount

of extremely high-dimensional data. Some actions that might be suggested by a recommender system

are new appliance purchases, shifting loads to off-peak hours, and fault detection.
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Chapter 1. Introduction 2

These systems will require machine learning to use data to conjecture actions that users have taken,

identify appliance profiles for a household, and to infer user preferences from a limited number of

observations. There are also opportunities for machine learning in sensor denoising and fault detection,

at both the household and grid levels.

It might be desirable to augment a recommender system with a survey functionality, as it is possible

to learn the shape of a user’s utility function, i.e., their preference for events that have not occurred,

to make more helpful suggestions. This problem is in the domain of preference elicitation [16] or active

learning [18].

Another major area of improvement is how power exchanges— the way agents can declare and bid

for electricity—on the grid itself work, which is the focus of this thesis. We will describe in detail the

problem of how electricity should be priced in order to make maximally efficient transactions. We view

the problem as one of coordination, where we assume that there is some trust among the agents. From a

more adversarial perspective, it can also be viewed as a mechanism design problem [13], where the agent

types represent the electricity supply or demand of each agent, and the goal is to adjust the payoff vectors

so that an equilibrium with optimal social welfare is implemented. There are several other interesting

potential uses of mechanisms that fall under the category of contract design: energy generation and

consumption prediction, consumer and producer pooling for electric utilities, and infrastructure and

generation cost sharing.

In this thesis, we will abstract away some of the details of the current system and physics and focus on

the key principles behind price design. Briefly, current electricity pricing regimes in many jurisdictions

require that electric utilities report the expected demand of their consumers, and generators report

their expected production, to an independent system operator (ISO) [7]. In the United States, ISOs

are nonprofit corporations formed at the recommendation of the federal energy regulator in order to

facilitate increased transaction volume between utilities resulting from electricity deregulation. ISO-

controlled electricity markets are examples of mechanisms, where a central controller declares a protocol

for mapping declarations by market participants to transactions and payments. The market participants

in this context are utilities and large industrial consumers on the demand side and generators on the

supply side.

The ISO typically solves a linear relaxation of the electricity distribution problem, telling generators

how much power to produce (with prices set using dual variables of the optimization). The linear relax-

ation neglects the non-linear physics of the system—it will be more accurate in relatively uncongested

networks or those with only short transmission lines than when congestion and lengthy transmission

amplify the impact of the physical non-linearities—but it can be solved efficiently and transparently.
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An underlying tension in market design is between easy to calculate, transparent prices and prices that

incentivize optimal behavior. The ISO solution is relatively complex, and the specific implementation is

analyzed and simulated by market participants to calculate ways they can misrepresent their supply or

demand and production costs to increase the amount they are paid by the ISO. One area our perspective

could be applied is to improve the stability guarantees of ISO algorithms. While it seems that electricity

buyers and sellers have no option but to participate in ISO exchanges, markets that are not provably

stable or approximately stable have historically been outperformed by their stable counterparts [21].

ISOs have existed for around 15 years.

At the household and small-business level, most consumers pay fixed rates to their electric utilities

representing the average cost of generation and distribution on their utility’s network over a long period

of time.1 These prices do not give the consumer any information about the true cost of electricity at

a particular moment. Electricity generation has roughly two “layers:” a base load and peaking plants.

The base load is cheap to operate, but it cannot be adjusted to current demand. Coal, hydro and nuclear

are three examples of base load power sources. Peaking plants are expensive and can be adjusted quickly

in response to relatively rapid changes in demand. Oil and gas turbines are examples. The result of this

system is that electricity has a low median price and a high average price.

In recent years, it has become increasingly easy for “household” consumers to generate electricity

from renewable sources at cheaper cost and with lower emissions—most notably wind and solar power.

Installation capacity is often higher in rural areas where space is available. Groups of such consumers

can often limit their dependence on the public grid by exploiting local generation, e.g., in the form of

microgrids [10]. Microgrids are groups of generators and consumers connected to the larger grid at a

single point, which allows decoupling in the event of grid failures.

For instance, consider a rural area in a developing country where a significant amount of power is

produced by wind farms, solar panels or biofuels. These tend to be located nearer to farms than to

urban centers, so some of these local generators may strike deals with nearby consumers (e.g., farms) to

construct private transmission lines and exchange power outside the public grid. Indeed, due to fixed

rate-schedules that mediate transactions with the public grid, it is often more profitable for them to sell

directly to their neighbors than to the grid. However, as we see below, such transactions can reduce

overall efficiency. The network in Figure 1.1, explained further in Chapter 3, illustrates such a setting.

This dynamic creates tension between the publicly-managed grid and the private agents it serves.

While the public grid may wish to construct additional transmission capacity, especially in the presence

1In areas that have received smart meters, time-of-use rates are often used, which designate a separate price for “peak”
and “off-peak” times.
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Q1 = 3 Q2 = −1 Q3 = −1

Q4 = −1

Q5 = −1 Q6 = 1 Q7 = −1

Figure 1.1: A network with private and public links. (a running example used in Secs. 3.1 and 3.2). Circles
represent net generators and squares net consumers. Node T represents the connection to the outside power
grid. Solid lines are publicly-owned links and dashed lines private links. We assume that public and private links
have roughly the same voltage and resistance. Qi denotes the supply of agent Ai.

of increasing distributed, unreliable generation, the benefit of doing so is limited by the degree of private

control of transmission lines allowed. In this thesis, we develop a routing scheme that allows agents

in a local “microgrid” to coordinate private distribution with the publicly-owned utility. Our scheme

achieves optimal distribution at minimum cost, while satisfying participation constraints in the sense

that each agent is at least as well off as in the uncoordinated regime. Our scheme can also be used as a

basis for determining cost-sharing of new local generation and transmission infrastructure among agents

by quantifying their individual benefits assuming optimal usage.

This rest of the thesis is organized as follows. In Chapter 2, we describe the current electricity grid,

smart grid plans and related research and provide background on the relevant game theoretic concepts

and briefly discuss previous research. In Section 3.1, we outline our model of the networks involved;

including agent utility functions, the physics of electricity distribution, and admissible strategies. In

Section 3.2, we describe several models of system behavior and describe how they are related to incentive

schemes. In Section 3.3, we present an incentive/routing scheme that coordinates agents on the private

network with the public network, maximizing aggregate agent utility across the distribution network.

We perform experiments in Chapter 4 that compare the performance of our system under various models

of agent behavior introduced in the previous chapter. We use random graphs to test performance under

a variety of assumptions, and we find that there is a large gap in performance between current pricing

schemes and the most sensitive ones. We present conclusions and other directions for future work in

Chapter 5.

The electricity generation and distribution context we describe and analyze is necessarily speculative

in certain aspects as it describes a system that does not yet exist and is still under debate by policymakers.

From a high level, we assume that small producers and consumers will have increased control over trading

decisions in future systems—that the most desirable way to increase the efficiency of electricity markets
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is by deregulation made possible by smart grid engineering allowing for more fine-grained control of

routing decisions across the grid. It is possible that the costs of deregulation due to increased cognitive

burden on market participants will outweigh its efficiency benefits in the short-term, but we think it is

important to investigate the value of greater decentralization given that technology will soon make this

possible. Our model thus emphasizes that agents must be incentivized to participate in any centralized

mechanism, i.e., it is possible for any agent to make outside arrangements which they will prefer if they

are more beneficial.

Nearly all research in power distribution uses some kind of approximate model of electrical physics as

the exact power flow equations are highly non-convex. We simplify the physics substantially to focus on

how the dynamics of power grids as mediums for electricity exchange between pairs of agents. The most

significant simplification we make is neglecting sympathetic flows which essentially impose constraints

on the fraction of power out of a node on each outgoing edge. We believe that these constraints could

be integrated into our optimization framework and priced, but this is an important area of future work.

We describe our physics model in detail in Section 3.1 and Section 3.2.

Computational considerations are another important area for future consideration. We focus on the

microgrid setting, where most networks have less than 150 nodes. In this context, our quadratic convex

optimizations are not difficult to solve (took under a second), but scaling problems might be encountered

in larger settings. We describe the computational issues in more detail in Section 3.3 and Chapter 4.

The number of optimizations that must be performed in the case that the system operator does not

have knowledge of previous transactions between agents is a potential computational bottelneck—it is

expensive to compute the payments that must be given to agents to incentivize them to participate in

the new exchange mechanism, as far as we know. It is likely that a heuristic or approximate algorithm

would be necessary in practice.



Chapter 2

Background

2.1 The Power Grid

In this section, we briefly describe the current power grid and how we model it in our analysis. Since we

do not have access to data describing the properties of current power networks, our approach to modeling

them will be to abstract away some of the physical properties and test a wide variety of parameters for

the others. Privacy and security concerns prevent most grid-related data from public release.

Our basic model for the power grid is a tree-like publicly-owned grid that has very little monitoring

equipment on the lines and simple meters at the connection points to users. We will represent the public

grid by a graph Gpub = (V,Epub). Assume that all users are connected to the public grid. Our basic

model for a user v’s utility function will be a single number Qv representing the supply or demand for

power of user v. A positive Qv represents a net supply and a negative one represents a net demand. We

use a single number for the sake of simplicity; the number can either represent a long-term average of

the supply or demand of the user or demand over a small slice of time. Following empirical work in this

area, we assume that v’s supply or demand is essentially unaffected by prices in the short term.

To explore the incentive properties of power exchange schemes, we will assume that there exist some

privately-owned transmission lines—for example, as part of a microgrid. We will refer to these lines

collectively as the private grid and represent it by a graph Gpriv = (Vpriv, Epriv). See Figure 1.1 for an

example of a grid with public and private links represented by a graph. Not every agent needs to be

connected to a private link. In our experiments, our model for constructing private edges is a random

graph.

Our major sources for the physics of power distribution are Wood and Wollenberg (1996) [28] and

6
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Saad et al. (2011) [22]. The former describes many of the key problems of power engineering, including

predicting power flow through a network, which has been extensively studied. The most general version

of the problem poses a difficult non-convex optimization where progress is still being made [11]. Nearly

all commonly-used methods neglect resistive losses, which are an important part of our analysis. The

general framework for these methods is to simplify the problem a lot or a little, perhaps making it

convex, and then solve the simplified model either exactly if it’s linear and convex or via a numerical

method otherwise.

Following Saad et al. (2011), we make several simplifications to the physics of power distribution that

go beyond simple power flows, while continuing to model resistive losses. We model alternating current

as direct current to avoid having to deal with complex numbers. We also neglect Kirchhoff’s voltage law,

which causes current to flow sympathetically around loops. We assume that physics minimizes resistive

losses; the resulting performance can be viewed as an upper-bound for real physics. It would not be

difficult to use more complicated physics models that make use of more specific information about the

properties of the grid, if we had access to that information.

Resistive losses are a key aspect of our model of the grid. When power is sent from agent u to agent

v, some the power dissipates in transmission. The amount of power lost is quadratic in the amount

transmitted and linear in the length of the transmission lines. We will denote the amount of power sent

from u to v as fu,v and the amount of power received from u at v as f ′u,v (after losses are deducted).

2.2 The Smart Grid

Smart grid research has largely focused on the development and implementation of sensing and actuating

hardware, usually with the goal of being able to monitor and control the grid for an area from a single

location. The objectives of this approach are to reduce resistive losses, efficiently manage generation

sources, and increase reliability. In recent years, there has been increasing interesting in smart grid

applications in the artificial intelligence community [17], particularly focused on how market participants

can cooperate to increase reliability and decrease cost. We will briefly describe several notable papers

on smart grid applications from an artificial intelligence perspective.

The most similar approach to our work is that of Miller et al. (2012), which formulates optimal power

distribution as a decentralized multiagent coordination problem, with the goal of reducing the amount

of computation required [12]. Our objectives are different because we are primarily interested in the

incentives of the agents to cooperate in the distribution scheme.

One common theme of algorithmic smart grid research is to shape demand to reduce maximum loads
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and react to fluctuations in supply availability (e.g., by shifting some peak demand to off-peak hours).

Peak demand is a critical driver behind supply costs because it is typically provided by finely adjustable

oil or gas turbines that are much more expensive to operate than other generation sources. Large scale

distributed battery capacity can help address this problem, as cheaply-generated power can be stored

until peak hours and then resold. One potential source of battery capacity is idle electric cars, but

any trading schemes will have to take into account when the car will be needed for transportation, and

owners are unlikely to want to manage trading manually. Vytelingum et al. (2010) designs decentralized

coordination algorithms that maximize the efficiency of distributed storage [27]. Their model of the

market is simple, but shows that without coordination algorithms, storage can decrease market stability

due to herding.

Similar coordination issues exist on the supply side of the market, e.g., among wind farms. Wind

power is unpredictable, making it difficult for generators to negotiate contracts with ISOs. Coalitions

of generators in geographically disparate areas can mitigate the impact of unpredictability, making it

easier for wind generators to enter the market [19]. By using scoring rules, they can incentivize accurate

prediction and reduce insurance costs.

Another approach is to form coalitions of consumers that have complementary demands. These

coalitions can be cheaper for the generator to supply to the extent that they have flatter aggregate load

profiles, accurate predictions of future use, and low consumption variance. Stable coalition formation

allows the generator to pass on savings to agents that have “useful” consumption patterns (e.g., that

improve overall efficiency) without having to calculate personalized prices for each agent. Vinyals et al.

(2012) studies coalition formation for consumers under the assumption that larger coalitions are harder

to manage [25].

Since consumers do not want to constantly make decisions about power usage based on supply avail-

ability, intelligent agents may be able to manage electricity usage and storage based on user preferences.

Vytelingum et al. (2010) develops a continuous double-auction protocol along with trading strategies

to maximize market efficiency [26]. They use the full DC power flow approximation and assume that

no resistive losses occur. However, their analysis does not address participation constraints or market

stability.

2.3 Game Theoretic Concepts

We will briefly define the relevant game theoretic concepts used to model electricity distribution markets.

Our basic view is that the players are the producers and consumers on the network, and the actions
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are the choices of where to send power over private infrastructure and what payments to make to other

agents. We assume that individual agents cannot determine the routing that occurs on publicly-owned

links, but they can reroute any portion of incoming power over whichever private edges they choose.

This assumption is unrealistic if nodes on the graph are viewed as individual households and businesses

on the current electricity grid because it would require sophisticated routing equipment. It is reasonable

in the context of a community-owned microgrid.

The problem can be viewed as either a competitive or cooperative game depending on the modeling

assumptions. We will describe both, but our primary analysis will focus on the cooperative perspective

because it neatly deals with the issue of agreements between agents. A competitive game consists of a

set N of agents (players), a set Ai of actions for each player i, and a function that specifies a payoff

for each player ui : A → R depending on the the action selected by each player [15]. Since our players

coincide with the nodes of a network, we will use the set V to represent the group of players.

We will model the game as having two stages, although only the first will be strategic. In the first

stage, each agent connected to a private edge sets the flow over the outgoing private edges. In the second

stage of the game, all remaining agent supplies or demands are sold to or bought by the public grid. In

this model, we will assume that the each agent pays the grid a fixed sell price ps or a fixed buy price pb

for each remaining unit of supply or demand. Note that flow does not need to be conserved in the first

stage because the public grid will buy or sell any amount of electricity in the second stage.

As the mechanism designer, our goal will be to determine a set of payoffs such that the agents choose

actions that minimize the aggregate cost to all agents. To predict the outcome of a game, we will refer

to solution concepts from game theory. The most prevalent of these is the Nash equilibrium, which

consists of an action for each player such that no individual agent has incentive to change her action

given that the others do not change theirs. Formally, a Nash equilibrium is an action profile a such that

ui(a) ≥ ui(a−i, ai),∀ai ∈ Ai,∀i ∈ N where a−i denotes the actions of all agents except i. A natural

strengthening of this concept is the Strong Nash equilibrium, a action profile (an action for each agent)

where no group of agents has incentive to change their actions given that the other agents do not, that

is, an action profile a such that
∑
i∈S ui(a) ≥

∑
i∈S ui(a−S , aS),∀aS ∈ ×j∈NAj ,∀S ⊆ N .

One potential difficulty with this approach is that the set of valid moves for a player depends on the

moves made by other players. Often, games will have multiple equilibria, which can make enforcing such

constraints difficult, as agents do not know which equilibria is active, and they may have incentives to

mislead other agents regarding the action they will play.

Viewing the problem as a cooperative game leads to a different perspective. In a cooperative game,

each agent cooperates with a coalition of agents, forming a contract to pick the action that is best for
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the group [15]. In a standard model of a cooperative game, the aggregate utility of any group of agents

is independent of which coalitions are formed by the other agents and the actions they take. Thus, we

can define a characteristic function v : 2N → IR where v(C) represents the maximum aggregate utility

of a group/coalition C can guarantee themselves by operating effectively.

The coalition then decides how to distribute its aggregate utility among its participants—hopefully

giving enough to each participant that they do not regret joining that coalition. To formalize this, the

core solution has all agents cooperate and sets payments such that the net payment to each group of

agents is greater than what they would receive if they were to join a different coalition or defect [15].

Specifically, let t be a vector of payments where ti is the payment to agent i. A vector t is a core

allocation if

∑
i∈N

ti = v(N) (2.1)

∑
i∈C

ti ≥ v(C) (2.2)

In the electricity distribution problem, a coalition consists of a group of agents that exchange electric-

ity among themselves. Finding a core payment vector corresponds to finding a “personalized” pricing

scheme such that no group of agents defects and forms a separate “market” or “trading group”. In

the case where transmission losses between two agents are independent of transmissions between other

agents, the cooperative game theory framework can be applied directly to efficiently calculate prices.

This can be accomplished by modeling it as a market game [24] or market game with transaction costs

[20]. We review some of the basic theory of market games, including the proof that core payments always

exist, in Appendix A.

Difficulties arise as a result of non-independent congestion losses on transmission framework. The

total loss incurred will be quadratic in the amount transmitted on a given line; details will be given in

Section 3.1. There are several modeling choices that can be made, depending on whether transmission

lines are shared among all agents on the private network or owned solely by the agents at the endpoints

of the lines. In the latter case, the lines connecting members of a coalition are owned by that coalition,

making the value of the characteristic function independent of the behavior of the other agents—a

typical cooperative game, but not a market game. If the lines are shared, coalitions can impose large

externalities on each other by congesting the lines that are important for other coalitions, making a

suitable characteristic function representation impossible. Instead, we model the competition between

coalitions as a competitive game and argue that stability can be guaranteed if market coordinator is
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aware of prior arrangements among market participants.

2.4 Network Games

In this section, we will give an overview of related work on network routing, sharing, and construction

games. Previous work in communication networks has produced edge-based market-clearing prices that

induce Nash equilibria in routing games in a variety of contexts. Work by Kelly et al. [9] proposes a

decentralized resource sharing protocol that produces approximate market-clearing prices via the Nash

equilibrium of a game, which was later extended to sharing of edges on a graph [8]. These approaches

do not address congestion of resources, and, as a consequence, do not provide a suitable model for power

distribution. Equilibrium prices in the case of competing network operators with congestion externalities

was explored by Acemoglu and Ozdaglar [1, 2], but only in parallel-serial networks. Their primary result

is that competition among network operators does not improve the quality of equilibrium behavior in

the presence of congestion, a counter-intuitive result that has some similarities to our analysis. The

communication networks framework is significantly different since each message has a fixed destination.

In power distribution, it is not important where a particular unit of power is delivered.

Another avenue of analysis has investigated models of decentralized network construction, primarily

focusing on the properties of the equilibrium networks [4, 6]. These papers are able to describe many

specific properties of the equilibrium because the formation games analyzed are quite simple. Once

congestion externalities are integrated, the analysis becomes much more difficult.



Chapter 3

Agent Behavior in the Power

Distribution Game

In this chapter, we describe and analyze our model of electricity markets, including a discussion of

how payment schemes affect the behavior of market participants. In Section 3.1, we introduce the

formal specifications of our model of electricity markets and our approach to physical modeling and

its assumptions. In Section 3.2, we present several models of behavior, which can be understood as

solutions to optimization problems. In Section 3.3, we analyze the problem of setting prices to induce

more efficient agent behavior. This approach determines payments that have useful properties, but the

meaning of the payments is quite opaque. In the following section, 3.4, we develop a complete theory for

payments for a simpler model (without resistive losses) that involves no optimization. These payments

give an intuition for the payments produced by the more complicated algorithm.

3.1 Setting

We first introduce the notation needed to describe our model. The networkG = (V,E) is composed of two

parts, a public network Gpub = (V,Epub) that is connected and a private network Gpriv = (Vpriv , Epriv )

where Vpriv ⊆ V . A single node T represents the link to the outside grid, which will buy or sell arbitrary

amounts of electricity; it is not connected to any agent via the private network. Let fu,v denote the

power sent from agent u to agent v over edge (u, v), and let f ′u,v denote the power received by agent v

over edge (u, v) after losses are deducted. These variables will be constrained to be non-negative. The

fu,v variables are used to formulate the problem as an optimization, but the solutions will always have

12
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T

Q1 = 3 Q2 = −1 Q3 = −1

Q4 = −1

Q5 = −1 Q6 = 1 Q7 = −1

Figure 3.1: A network with private and public links. (a running example used in Secs. 3.1 and 3.2). Circles
represent net generators and squares net consumers. Node T represents the connection to the outside power
grid. Solid lines are publicly-owned links and dashed lines private links. We assume that public and private links
have roughly the same voltage and resistance. Qi denotes the supply of agent Ai.

at least one of fu,v and fv,u equal to zero, since power may only flow in one direction.

Each agent Av (except T ) has a utility function Uv(xv) for any allocation xv of power representing

their net consumption. Because demand for electricity is usually highly inelastic, we represent a utility

function by a single constant Qv, the agent’s, steady-state (long-term) supply or demand for power.1

Positive Qv reflects a surplus of electricity, in which case we assume Uv(xv) is very steep for xv < 0 and

equal to zero thereafter. Negative Qv reflects net demand, where Uv(xv) is very steep for xv < −Qv

and zero after. We will only consider settings in which all demands can be feasibly satisfied, so we treat

these utility functions as if they were constraints on the final solution. These assumptions about utility

functions simplify the analysis significantly. They also have the benefit of being simple to query agents

about. We believe the core of the analysis can be extended the case of arbitrary utility functions.

Figure 3.1 illustrates the model: each circle is a net generator and each square a net consumer, with

Qv being net power generated by agent Av. T represents the connection to the public grid, while public

and private transmission lines are solid and dashed lines, respectively.

We consider several models of agent behavior below corresponding to different degrees of coordination

and incentive structures. Each model, together with an agent’s connections, determines an agent’s

strategy space. All models below share a common simplified physics model:

• Flow of electricity must be conserved: flow into any v must equal flow out of v less the agent’s supply

Qv. This a natural requirement when the problem is viewed from the network-flow perspective.

All physics models will have an analogous constraint.

• Resistive losses occur when power is transmitted between two nodes. Energy lost to heat and

radiation is proportional to the square of the amount transmitted, and depends on the voltage and

1There are obvious limits to the assumption of total demand inelasticity; studies of elasticity of electricity demand have
been restricted to small price ranges. The problem making demand more sensitive to the cost of electricity supply, whether
through price or other means (e.g. visual feedback) is an important one that is beyond the scope of our present analysis.
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resistance of a particular link. Let Ru,v be the resistance and Uu,v the voltage on edge (u, v). If u

sends fu,v units of power over the line (u, v), the amount v receives from u is:

f ′u,v = fu,v −
f2u,vRu,v

U2
u,v

(3.1)

Note that Ru,v is proportional to the length of (u, v). Resistive losses are often assumed to be

negligible in many simplified power flow models.

• Transformer losses occur when electricity is “stepped up/down” between high outside grid voltages

and low local grid voltages at T . This loss is a constant fraction β of the power converted.

• Electricity can be disposed of at any point in the network. We make this assumption to make

optimization simpler, but it should not have a large effect qualitatively. It could potentially affect

the analysis if the generation is unpredictable and not easily adjusted, creating the potential for

cascading failures due to overloading. We do not consider this problem.

From a physics standpoint, our simplified model treats alternating current (AC), the choice of most

power systems worldwide, as direct current (DC), which is less complicated to deal with, and is a

common simplification in power systems research (flow prediction in AC networks is often non-convex)

[11]. We also neglect Kirchhoff’s voltage law, that causes power to flow sympathetically on loops. We

will later introduce an energy-minimization problem that will approximate physics-induced flow on our

simplified model.

To justify our model of electricity physics, we want to make two observations. The first is that

the model we use gives an upper-bound for the efficiency of physics-based routing; in particular, AC

power introduces interference when currents are out of phase, and Kirchhoff’s voltage law introduces

“phantom” power flows that are not useful for achieving the routing objective. The second issue is that

any physics model can be substituted in to the analysis without affecting calculations in other areas.

Since we lack specific knowledge of the physical properties of grids, we use a high-level physics model

that is optimistic to show that the “goals” of physics are not the same as those of a grid operator; in

particular, physics-based routing does not take into account the cost of generation from a particular

source. High-cost power can be overused if it is close to consumers, when it may have been better to

send low-cost power, incurring higher losses in the process though still providing more cost effective

consumption.

Our overall goal is to induce transmissions that minimize the amount of power purchased from the

outside grid (and implicitly total generation), while satisfying the demands of all agents. This perspective
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is valid in settings where private generation has lower marginal cost than that of the public grid—which

often true of renewable sources—and/or where public generation is a long distance away from our local

agents. Agents can either transact exclusively with the public grid or join a coalition of other agents and

coordinate their actions. The public grid offers a fixed buy price pb and a lower fixed sell price ps to the

local network, which is how utilities currently engage small consumers and producers (it is impossible

to do otherwise without smart meters). The prices can reflect average costs to the public grid (e.g.,

reflecting distance), but otherwise assumes that local consumption has little impact on the larger public

network, which is true when local networks represent a small fraction of total demand. Flow on the

public network is dictated by our simplified physics model in the following sense: it will be the flow that

minimizes transmission losses. This can be viewed as the lowest energy state of the system.

For an example of how private routing can affect the network, consider Figure 3.1. Since the grid’s

buy and sell prices are fixed, A5 and A6 will exchange power over the dashed edge—a privately-owned

transmission line. The public grid will then have to send power over a long distance from T to A7. Given

that A5 and A6 are cooperating, if the private edge (5, 6) did not exist, power would only need to be

sent from T to A5, which is closer. Due to transmission losses, the existence of the private link between

A5 and A6 combined with rational behavior of A5 and A6 decreases the social welfare of the resulting

routing equilibrium.

Below we outline different ways in which coalitions of agents can coordinate their behavior to maxi-

mize their collective utility, assuming they can divide any surplus generated appropriately. The public

network is centrally managed, but routing on any link in the private network can be arbitrarily con-

trolled. We assume that agents in separate coalitions do not trade with each other on the private network

(otherwise, they will be taken as part of the same coalition).

Two coordination issues arise in this setting: the first is finding optimal coordinated strategies, or

a routing scheme, for the grand coalition of all agents: complete coordination will ensure that all agent

demands are met at minimum cost. The second is finding an incentive scheme, or payments, that

stabilize the grand coalition by aligning their interests to induce minimum cost electricity flow on the

network. In this work, we first address the former, and assume that agents have the ability to find

stabilizing payments. We discuss incentives in more depth in Section 3.3.

3.2 Models of Agent Behavior

We compare optimal agent routing behavior under four different models of cooperation. In addition

to a mathematical specification for each model, we provide a description of the flows it induces on the
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network in Figure 3.1. Induced flows in each model are computed sequentially in two stages. In the

private stage, agents on the private network agree to exchange power. In the public stage, routing on the

public network occurs given net demands after the private stage, and any payments are made between

the grid and the private agents.

The Ad Hoc Model. The ad hoc model simulates system behavior when agents make decisions in a

local, myopic manner without coordination or cooperation. Agents will only ever trade power with their

neighbors, and they do so in order of closeness. Each trade is made to maximize the joint utility of the

two traders. This model probably best reflects status quo behavior because private transmission lines

are unregulated, and there are relatively few of them. It is unlikely that agents that are very distant

from each other will be able to discover that it would be beneficial to build a private line between

them. Although the random network generation model we use for experiments does not take distance

into account, this behavior model favors the use of lines between agents that are closer to each other.

The routing on the public network is induced by physics, which aligns with the primarily physics-based

routing that occurs on the public grid.

We now formally describe the algorithm used to compute behavior under the ad hoc model. To

compute exchanges on the private network, we order private edges by increasing length—agents that are

close together are more likely to transact because they are generally more familiar with each other. For

each (u, v) ∈ Epriv , set the non-negative flow on that edge such that the total utility of agents u and v

is maximized:

max
fu,v


ps(Qu − fu,v) if Qu − fu,v ≥ 0

−pb(Qu − fu,v) if Qu − fu,v < 0

+


ps(Qv + f ′u,v) if Qv + f ′u,v ≥ 0

−pb(Qv + f ′u,v) if Qv + f ′u,v < 0

(3.2)

The first term of this equation represents the utility of agent u, and the second term represents the

utility of agent v. These utility terms describe the cost or payoff resulting from buying or selling the

remaining power of each agent, after trading, to the public grid. We then update the demands of these

two nodes by setting Qnewu = Qoldu − fu,v and Qnewv = Qoldv + f ′u,v. We continue through the ordered

sequence of edges until no profitable trades remain. Note that two agents only exchange if one is a net

generator and the other a net consumer, and agents only trade with their immediate neighbors in Gpriv .

After these local transactions have occurred, remaining demand is met using physics-based flow. This
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occurs without the agents choosing a strategy because they are unable to affect the flow on infrastructure

that they do not own. Physics-based routing happens according to the physics model described in the

previous section. We minimize transmission losses by solving the following optimization:

min
fu,v,∀(u,v)∈Epub

∑
(u,v)∈Epub

f2u,vRu,v

U2
u,v

+
β

1− β
∑

v:(T,v)∈Epub

fT,v + β
∑

v:(v,T )∈Epub

f ′v,T (3.3)

subject to, for each node v ∈ V :

Q′v +
∑

u:(u,v)∈E

f ′u,v ≥
∑

u:(v,u)∈E

fv,u (3.4)

where Q′v (in this case, Qnewv ) is the supply of node v induced by the flows from private trading. The

first term of Objective 3.3 represents the resistive losses incurred on every edge in the public network,

while the second and third terms represent the amount lost while changing the voltage of electricity from

the grid at node T . Constraint 3.4 states that flow should be conserved at every node in the network.

We observe the following induced flows on the network in Figure 3.1 under this ad hoc model. On the

upper branch, A1 sends power to A2, but the private edge (2, 3) remains unused because A1 is unable to

trade with A3 in the private stage. This causes public edge (2, 3) to carry more power than necessary,

incurring higher losses. On the middle branch, the cost of supplying A4 is higher than necessary because

physics-induced routing equalizes the losses on (T, 4) and (1, 4)—wasting power from A1—as long as

losses on (1, 4) exceed β. On the lower branch, A6 sends its power to A5, leaving A7 to receive power

from T . This is inefficient because A5 is closer to T than is A7.

The Private Self-Interest Model. The private self-interest model reflects agents on the private

network cooperating to maximize their aggregate utility under fixed public network pricing. The agents

behave as if they solved a joint optimization with a term representing the utility of each. The variables

in this optimization are the flow variables on the private network. The flow on the public network is

determined by physics in a method analogous to that in the ad hoc section—via minimizing the amount

of transmission losses under our basic physical constraints.
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The agents connected on the private network solve the following optimization:

min
fu,v :(u,v)∈Epriv

∑
v∈Vpriv


−ps(Qv + x′v) if Qv + x′v ≥ 0

pb(Qv + x′v) if Qv + x′v < 0

(3.5)

where

x′v =
∑

u:(u,v)∈Epriv

f ′u,v −
∑

u:(v,u)∈Epriv

fv,u (3.6)

Objective 3.5 represents the total cost to nodes on the private network to satisfy remaining demand from

(or sell surplus to) the public grid after all (optimal) private transactions are made. Each term in the

minimization represents the utility of a single agent after the routing on the private network described

by the fu,v variables is carried out. The utility terms represent the cost or payoff of buying or selling to

the public grid after all routing on the private network is carried out.

After the private agents have minimized their liability to the grid, physics governs flow on the public

network as in the ad hoc model (Objective 3.3 subject to Constraint 3.4).

In this model, the flow on the middle and lower branches of Figure 3.1 is the same as in the ad

hoc model. On the upper branch, A1 sends power to A3 during the private stage (exchanges between

non-adjacent nodes is now permitted). However, this does not reduce the cost of power from the public

network, since this merely shifts load from public to private edges, leaving the public edges virtually

unused.

By solving the optimization, agents on the private network maximize their aggregate utility. However,

they still must divide up the surplus in a way so that none of their agents defect. We will discuss this

problem in Section 3.3.

The Cooperative Model. In the cooperative model, agents on the private network distribute electric-

ity so that the load on the public network is minimized (again, flow on the public network is determined

by physics). The agents solve a joint optimization that minimizes the overall cost to supply electricity to

the entire network by minimizing the amount of externally generated power consumed by the entire set

of agents (according to our assumption that all locally generated power is from renewable sources and

thus has near zero marginal cost). Causing agents to cooperate will require suitable incentives, which

we will discuss in Section 3.3. Minimizing the overall draw from the grid requires arranging flows on the
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private network that solve the following optimization:

min
fu,v :(u,v)∈Epriv

1

1− β
∑

v:(T,v)∈E

fT,v − (1− β)
∑

v:(v,T )∈E

f ′v,T (3.7)

subject to the usual flow and physical constraints, Equations 3.3 and Equation 3.4. Recall that T is the

node representing the link to the larger grid. The first sum in Objective 3.7 represents the total amount

of external power imported—the loss β incurred at the transformer acts as a percent additional cost on

this power. The second sum represents the total amount of locally-generated power that is exported less

transformer losses. Note that for every edge (v, T ), at least one of fv,T and fT,v will be 0.

This optimization is more difficult to solve than the others because it involves a constraint that the

flows on the public network are set such that a separate objective (physics-based energy minimization)

is minimized. This computation is explained at the end of this section.

The flows induced by the cooperative model in Figure 3.1 are quite different from those seen in the

previous models. Flows on the upper and lower branches resolve the inefficiencies present in earlier

models: the upper branch flow from A1 to A2 and A3 uses the public and private links equally to

minimize transmission losses, and on the lower branch, power from A6 will flow to A7 instead of A5.

Despite the improvement, flow on the middle branch remains inefficient due to physics-based routing,

causing A4 to draw power from T as well as A1.

The Integrated Model. In the integrated model, we allow the flow on all edges, both private and

public, to be controlled by the local agents, relaxing the constraint that flow on public edges be governed

by the physics model. The objective minimizes the amount of externally generated power consumed, as

in the previous model, but all flow variables are assumed to be controllable by the agents, not just those

on the private network.

This can be viewed as “ideal” behavior for agents on a network that have arbitrarily precise routing

equipment and some degree of control over (local) transmission on public lines. This reflects the most

effective use of resources if transmission lines are expensive to construct and routing equipment is cheap.

It requires solution of the following optimization:

min
fu,v :(u,v)∈E

1

1− β
∑

v:(T,v)∈E

fT,v − (1− β)
∑

v:(v,T )∈E

f ′v,T (3.8)

subject to constraints Equation 3.4. The objective is identical to that in the cooperative case (Equa-

tion 3.7) except that all flows are controllable, not just those on private links. The first term represents

the amount of externally generated power imported, and the second term represents the amount of local
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power exported.

The flows induced by the integrated model in Figure 3.1 are the same as those of the cooperative

model on the upper and lower branches. However, because no physics-based flows occur, the inefficiency

on the middle branch disappears, and A4 will draw power only from A1.

Computation. Except for the cooperative model, the optimization problems above are all convex,

quadratically-constrained quadratic programs (QCQP) that can be directly solved by CPLEX or other

off-the-shelf optimization tools.

In the cooperative case, we have a constraint that the flows on the public network must minimize

the physics-based energy function given the flows set by the agents. Our overall objective of minimizing

the consumption of externally generated power then depends on flows on both the public and private

network. We approximate a solution to this problem by minimizing the objective over all the flow

variables. We can then calculate the value of the objective by solving the physics-based minimization

over the variables on the public network. The resulting solution is feasible, and proves to be within a

few percent of the optimal value in our experiments. The cooperative model will always induce higher

losses than the integrated model, but it is quite close in practice.

3.3 A Simple Incentive Scheme

While the methods above compute optimal coordinated behavior under the behavioral restrictions im-

posed, we must also ensure incentives can be put in place such that all agents effectively cooperate by

actually adopting the strategy prescribed by the optimal solution. The aim of these prices is to induce

the cooperative or integrated behavior described in the previous section. Which of the two models can

be used in practice depends on what kind of routing equipment is available on the network.

Equilibrium Prices. We first present a pricing scheme that aligns the interests of each agent on

the private network with socially optimal behavior. This induces self-interested agents to adopt the

cooperative solution (or the integrated solution if public links are controlled locally). If the public links

are controlled locally, the prices need to be charged to every agent in the network. If they are controlled

centrally, the prices only need to be applied to agents that are connected to at least one private edge.

Our technique is relatively standard in network models [23, 14, 9, 1]: we compute agent-specific

buy/sell prices using dual prices obtained from the optimization. These induce individual agents to

implement the globally optimal solution by maximizing their own net utility at these prices.

We first solve the integrated optimization Equation 3.8. By the first-order optimality conditions,
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there is a set of positive dual variables µ such that: (a) for each edge (u, v), where u, v 6= T :

−µv
(

1− 2fu,vRu,v
U2
u,v

)
+ µu − µu,v = 0; (3.9)

(b) for each edge (T, v):

1

1− β
− µv

(
1− 2fT,vRT,v

U2
T,v

)
− µT,v = 0; (3.10)

and (c) for each edge (v, T ):

−(1− β)

(
1− 2fv,TRv,T

U2
v,T

)
+ µv − µv,T = 0. (3.11)

The values of these dual variables “price” the direct transmission to and from each agent. We charge

each agent v:

• µv + µv,u for each unit sent to u 6= T and −µu for each unit received (after losses) by u 6= T .

• −µu + µu,v for each unit sent from u 6= T and µv for each unit received (after losses) from u 6= T .

• 1
1−β − µv

(
1− fT,vRT,v

U2
T,v

)
, for each unit sent from T (if (T, v) ∈ E), where fT,v is the total amount

sent by T to v.

• µv − (1− β)
(

1− fv,TRv,T

U2
v,T

)
, for each unit sent to T (if (T, v) ∈ E), where fv,T is the total amount

sent to T by v.

Note, in our models, there are no direct private links to T—we include payments for such links for

completeness. It is possible to imagine a model where an agent may construct a transmission line to

a grid substation (or other public infrastructure), but it is not clear how the line would be controlled.

Thus, we omit it from our overall model.

Assume these prices are fixed. Each v in the local network has the following “personal” optimization

problem to maximize its utility for the (net) power received minus the price paid:

max
fu,v :(u,v)∈E
fv,u:(v,u)∈E

Uv

Qv +
∑

u:(u,v)∈E

f ′u,v −
∑

u:(v,u)∈E

fv,u


+

∑
u:(v,u)∈E
u6=T

(
(µv + µv,u)fv,u − µuf ′v,u

)
+

∑
u:(u,v)∈E
u 6=T

(
(−µu + µu,v)fu,v + µvf

′
u,v

)
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plus the following expression if the node is connected to T :

(1− β)f ′v,T − (µv − µv,T )fv,T −
(

1

1− β
− µT,v

)
fT,v + µv

(
1− 2fT,vRT,v

U2
T,v

)

The first-order optimality conditions for this problem are a subset of those for the global optimization.

Thus, the optimal flow for any agent at the given prices coincides precisely with the globally optimal

flows. Furthermore, no coalition of agents can improve their aggregate utility by changing their strategies

at these prices. In other words, these prices induce a strong Nash equilibrium that coincides with the

globally optimal outcome. However, these prices have some weaknesses. We do not have any guarantees

about the total amount paid to the mechanism. Ideally, we would want it to be zero. We also do not

know if the individual agents would choose to participate in this mechanism because we do not know

what their previous contracts were. We will address these issues further below.

Core Stability. If the prices that arise as a by-product of the optimization are taken as given, they

induce strongly stable optimal behavior in utility maximizing agents. However, if the market coordinator

has no binding power over the agents to accept these prices, certain agents may refuse to “enter this

market” if they had prior local arrangements (e.g., in the private self-interest model or in some other

form) that gave them higher utility. For example, in a network that has a single private edge that

connects a generator and a consumer, these two agents will likely benefit greatly from the operation

of the edge, and thus be unwilling to agree to a change in pricing without inducement. Furthermore,

while coalitional defections cannot be beneficial given these fixed prices, the allocation induced by these

prices cannot generally be supported if one or more agents refuse to participate. Thus, we might need

to consider payment schemes that prevent such defection.

Superficially our models seem to fit within the framework of market games, albeit with variable

“transaction” costs induced by distance and load. Unfortunately, there is no natural characteristic

function representation for this cooperative game. The value that one coalition of cooperating agents

receives from a given strategy can be altered by the actions of another: if a second coalition routes

power over the same transmission lines, the higher load increases power loss quadratically. Research on

market games [24] shows that core transfers exist in a variety of exchanges by using dual variables of

allocation optimization as prices, as we do above, making core transfers easy to compute. However, our

model is not reducible to market games due to interaction effects. These require that, when reasoning

about potential defections from the grand coalition, we should consider Nash equilibria that emerge

when treating different coalitions as players.

Unfortunately, we have not yet been able to prove that transfers exist that support a strong Nash



Chapter 3. Agent Behavior in the Power Distribution Game 23

equilibrium (or loosely, a core imputation). We strongly suspect that this is so: in all instances tested

empirically, we are able to compute stability-inducing transfers. This remains an important topic of

research. We note that if the market coordinator (system operator) knows of existing arrangements

between agents prior to joining the coordinated local network, participation constraints that induce

them to participate can be easily addressed. If the agents were to agree to participate in the pricing

scheme, the social welfare of the system will increase by a non-negative amount, since the current

transmission schedule is a feasible option in the global optimization. The operator can distribute this

surplus to agents on the private network, guaranteeing that each receives utility at least that derived

prior to coordination.

3.4 No-Resistive-Losses Model

Since it is not intuitively obvious what the payments calculated by our incentive look like, it is interesting

to consider a simpler case where core payments can be explicitly calculated: the power distribution model

without resistive losses. In this section, we will describe the model and the pricing that naturally emerges

from it.

As in the general resistive losses model, we will assume the agents are represented by nodes on a

graph G, and the transmission lines between them are represented by edges on that graph. We will

assume that the graph is connected, which can be relaxed by decomposing a single disconnected graph

into multiple instances of no-resistive-losses distribution. We will further assume that each agent can

buy and sell power from the public grid at the same prices, pb and ps. We note that this is a natural

assumption as long as all agents are connected to the public grid because there are no resistive losses in

transmission.

Without loss of generality, we will normalize each utility function such that Uv(−Qv) = 0 if Qv < 0,

i.e., each agent with demand for power receives zero utility at his stated demand, and Uv(0) = 0 if

Qv ≥ 0, i.e., each agent with power surplus receives zero utility when allocated no power. We will

also make an assumption about utility functions that is realistic, but more restrictive than we have

previously: agents do not receive any utility for excess power other than ps per unit and that they do

not lose utility for a power deficit other than pb per unit. Essentially, we assume that agents have a

completely inelastic demand for power and the grid offers linear prices.

The global optimization version of no-resistive-losses distribution is to find the allocation of power

to agents such that the aggregate utility of the agents is maximized. We note that the actual power

flow used in distribution does not matter—there are no resistive losses so the capacity of each edge is
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unlimited.2 This model qualifies as a network game, but we will not model it as such because the network

game formulation only provides payments as the solution to a linear program, not in closed form.

Let v(C) be the net payment to the grid for optimal behavior for coalition C. Since the model is

simple, optimal behavior consists only of sending surplus power to agents that need it. The agents in

a coalition C will derive some benefit, i.e., a reduction in cost or increase in profit, from cooperating.

Under this simple model, it is a core allocation to divide this benefit among the cooperating agents

proportionally according to how much of the scarce resource that each provides, where the scarce resource

is the resource—either supply or demand—which would increase the amount of benefit from cooperation

if more of it were present in the coalition. We will call it the proportional scarce allocation.

Definition 1 (Proportional Scarce Allocation). The following ~t is the proportional scarce allocation:

ti = v({i}) + si

=


Qips if Qi ≥ 0

Qipb if Qi < 0

+


(ps − pb)Qi if Q(N) ≥ 0, Qi < 0

(pb − ps)Qi if Q(N) < 0, Qi ≥ 0

0 otherwise

where

si =


(ps − pb)Qi if Q(N) ≥ 0, Qi < 0

(pb − ps)Qi if Q(N) < 0, Qi ≥ 0

0 otherwise

Here si represents the share of the benefits of cooperation agent i receives based on the amount of

scarce resource they have. Agent i’s reservation value v({i}) represents a participation constraint: how

well the agent could do if she did not cooperate.

Theorem 1. The proportional scarce allocation ~t is a core allocation.

For example, in a coalition with 50 kWh of supply and 60 kWh of demand, supply would be the

scarce resource, and it would be a core allocation to divide the benefits of cooperation among agents

with net positive supply proportionally to the amount of supply they provide. A full proof of Theorem 1

and further discussion is included in Appendix B.

2The optimization typically solved by ISOs for pricing purposes is similar to this problem except transmission lines
with finite capacity are used to represent resistive losses.
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The simpler market game with no resistive losses can be thought of as an approximation to the

full power distribution game when transmission losses are low. Since they are typically around 7% in

practice, the approximation will be quite close. Therefore, we can think of a core allocation for the

full power distribution game as roughly distributing profits according to the amount of scarce resource

provided by each agent, with some separation of different parts of the network caused by the losses on

each edge.



Chapter 4

Experiments

In this chapter, we simulate the effect of the four behavior models described in the previous chapter on

various types of electricity grids. We do not have access to data on the topology of real electricity grids,

and private infrastructure does not widely exist outside of self-contained microgrids that connect to the

public grid at a single point. Thus, we will make some general assumptions about grid structure and

test a variety of parameters for aspects of the grid we are unsure about. At a high level, we assume that

the public grid is a minimum spanning tree that averages 7% in transmission losses, the private grid is

a random graph, and that agent power supplies and demands are sampled from a normal distribution.

We will describe our model formally, justifying the assumptions we make about specific values and then

discuss some potential critique of our assumptions.

We test a variety of generation and distribution scenarios. Some reflect current practice, while

others reflect future settings with potential increased usage of local, private generation and transmission

infrastructure. Our proxy for social welfare is transmission loss, i.e., the amount of power originating

in the public grid that is not consumed by agents in the local network (assuming all agent demands

are satisfied). This correlates linearly with social welfare assuming local producers have linear cost

curves for generation. Since cost curves are typically convex, our results will, in fact, underestimate

true improvement in social welfare due to lowered losses. All local networks in our experiments consume

many times more power than they produce (which reflects most realistic settings) and have an average

transmission loss of around 7% (with standard deviation of 2.5%) when no private infrastructure or

distributed generation is assumed: this is the current U.S. average for transmission losses.

In each trial, 100 agents are distributed uniformly over a square grid of size either 100× 100km. (low

density) or 1× 1km. (high density). We generate a distance-minimizing spanning tree connecting these

26
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agents (and T ), reflecting how most public transmission networks are constructed. Links between agents

have voltage 22kV, and links to T are 50 kV (links to T tend to have a higher load, so are typically

higher voltage). All edges have 0.2 ohms of resistance per km. of length. Transformer losses at T are

given by β = 0.02 (this determines the theoretical lower limit on transmission loss for a net-consumer

network, as all publicly-supplied power must pass through T ). We use a 10% gap between the grid buy

price pb and sell price ps.

Agent demands are distributed normally with fixed mean µ, and a variable std. dev. σ which varies

the amount of distributed generation: we set σ = µ/2 (low degree of distributed generation), 3µ/4

(medium), µ (high) and 5µ/4 (very high), meaning that we expect 2.5%, 9%, 16%, and 21% of agents to

be net producers, respectively. The private network was generated by sampling an Erdös-Renyi random

graph using p to determine edge density in the network: each edge is included with probability p. We use

edge densities of 0 (i.e., no private network), 1
n2 , 1

n , and 1
log(n) (the last representing heavy investment

in private infrastructure).

These levels of sampling probability have some significance in terms of emergent behavior in Erdös-

Renyi random graphs [5]. From the perspective of expectation, at p = 1
n2 we expect a single edge

on the private network since there are 1
n2 edges to sample from. At p = 1

n , the expected degree for

each node on the private network is 1. We can also make some observations about component size and

number of components. For p = 1
n , the private network will almost surely have a component of size of

order O(n2/3)—around 22 nodes in a 100 node network. At p = 1
log(n) , the graph will almost surely be

connected.

Before we describe our results, we will discuss several potential weaknesses of our experimental setup.

One issue with our modeling of resistive losses is that it is possible that most losses are incurred in

transmission to or from remote places, rather than locally. This occurs naturally to an extent in our low

density 100×100km. scenario, but does not fully account for the case where a large amount of a network

generation occurs at extreme distance from the agents it interacts with, e.g., rural hydroelectric dams

or remote settlements. Our modeling of resistive losses will concentrate them around heavy producers

and consumers and agents that are centrally located in the network.

Another area of weakness relates to our assumptions about the probabilistic distribution of electric-

ity supply/demand. We assume a unimodal normal distribution with relatively high variance. This

distribution could easily be bimodal in practice, as one might expect that those agents who have dis-

tributed generation capacity would likely be separable from those without it. We may also expect to see

generation being built in areas of high demand in the case that price incentives are well-aligned.

Our induced-spanning tree model of the public grid does not exactly align with the reality of grid
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Amt. of
dist. gen.

Model
Edge density on priv. net.
0 1

n2
1
n

1
log(n)

Low

Ad hoc 7.14 7.25 7.05 7.13
Priv. self-int. 7.14 7.25 7.05 7.13
Coop. 7.14 6.95 2.91 2.16
Integrated 7.14 6.95 2.92 2.16

Med.

Ad hoc 7.28 7.19 7.15 7.20
Priv. self-int. 7.28 7.19 7.15 7.20
Coop. 7.28 6.92 2.93 2.16
Integrated 7.28 6.91 2.93 2.16

High

Ad hoc 7.19 7.37 7.34 7.24
Priv. self-int. 7.19 7.37 7.34 7.24
Coop. 7.19 7.07 2.97 2.15
Integrated 7.15 7.05 2.96 2.15

V. High

Ad hoc 7.32 7.26 7.28 7.22
Priv. self-int. 7.32 7.26 7.27 7.20
Coop. 7.32 6.93 2.95 2.16
Integrated 7.26 6.87 2.94 2.16

Figure 4.1: Avg. transmission loss as a percentage of net demand in a low (node) density network (1 agent per
sq. kilometer).

Amt. of
dist. gen.

Model
Edge density on priv. net.
0 1

n2
1
n

1
log(n)

Low

Ad hoc 7.25 7.28 7.31 7.33
Priv. self-int. 7.25 7.28 7.31 7.33
Coop. 7.25 6.97 2.93 2.16
Integrated 7.24 6.97 2.93 2.16

Med.

Ad hoc 7.22 7.39 7.40 7.08
Priv. self-int. 7.22 7.39 7.40 7.09
Coop. 7.22 7.05 3.00 2.16
Integrated 7.21 7.04 3.00 2.16

High

Ad hoc 7.42 7.30 7.31 7.37
Priv. self-int. 7.42 7.30 7.31 7.36
Coop. 7.42 6.99 2.99 2.16
Integrated 7.40 6.97 2.98 2.16

V. High

Ad hoc 7.30 7.26 7.50 7.41
Priv. self-int. 7.30 7.26 7.50 7.39
Coop. 7.30 6.91 3.00 2.16
Integrated 7.26 6.85 2.99 2.16

Figure 4.2: Avg. transmission loss as a percentage of net demand in a high (node) density network (100 agents
sq. kilometer).
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construction costs. From observation, agents are often connected to a single “terminal” node in an

electricity grid, especially in urban settings. In terms of tree structure, it seems likely that the branching

factor of parents of leaf nodes is higher on average than the branching factor of other nodes on the tree.

We speculate that this structure emerges due to the costs of land-use rights.

Figures 4.1 and 4.2 summarize our results, with each data point showing average transmission loss

over 1000 random instances.1 At a high level, we see that the cooperative and integrated models provide

significantly lower losses relative to the ad hoc and private-self interest models in nearly all cases. We

see relatively small amounts of savings at private edge densities of 0 and 1
n2 and relatively large amounts

at 1
n and 1

log(n) . Increased private network density correlates very strongly with savings in the more

coordinated models: losses are roughly 60% less than in the ad hoc and private self-interest models when

edge density is 1
n or greater (in both the low and high node density models). With edge density 1

log(n) ,

transmission losses approach the lower bound of 2% associated with purchase of all power from the grid

with no transmission (only transformer) loss.

Theoretically, the integrated model should be more efficient than the cooperative model, which in

turn should outperform the ad hoc and private self-interested models. This hierarchy is reflected in our

experimental results. Integrated tends to not do much better than Cooperative in high private-edge

density. In the low node density, low distributed generation and 1
n private-edge density, Integrated

performed slightly worse than cooperative, which appears to be due to build up of rounding error. With

low private-edge density and low or medium distributed generation cases, there was also little difference

between the two models. The largest gaps appear in low private edge density and high distributed

generation settings, with a largest gap of nearly one percent occurring in low node density, very high

distributed generation and 1
n2 private edge density.

We do not have a theoretical result that dictates how the ad hoc and private self-interest models

should compare. In practice, their performance is extremely similar, usually with a slight edge for Private

Self-interest. The largest gap of 0.3% between the two models occurs in the low node density, very high

distributed generation and 1
log(n) private-edge density case. Private Self-interest outperforms Ad Hoc in

all cases except high node density, medium distributed generation and 1
log(n) edge density.

The main explanation for the similar performance is that it seems to make little difference what

trading goes on between agents on the private network if the private network is not used to assist the

public grid distributing power from the transmission link node T . These networks are all aggregate net

consumers so the most important task of infrastructure is to efficiently distribute power coming from

1Std. dev. is not shown, but is 2.5-3% for avg. losses in the 7% range, 0.5% for losses around 3%, and 0.01% for losses
around 2%.
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the outside grid. The internal power flows from distributed generation are relatively less important.

Our results assume a fixed buy-sell price gap of 10%. The smaller this difference is, the less trading

will occur in the ad hoc and private self-interest models. A small gap mediates the effect of bad routing

decisions on the private network, but also causes less usage of private edges, increasing load on public

infrastructure. We observe in Figures 4.1 and 4.2 what could be a mild increase in losses as more

distributed generation is deployed (although it is hard to be sure due to sampling noise). This would

not be surprising since this also introduces higher demands in our model (we keep net local demand

constant)—load becomes more focused around large producers and consumers, causing large losses at

these points. The average loss in the zero private edge case is 7.22% in low distributed generation and

7.29% in high distributed generation. In 1
log(n) edge density, the average loss is 4.67% in low distributed

generation and 4.73% in high distributed generation.

Generating the random graphs was usually the most computationally expensive part of each trial—at

least for 100 node graphs, solving the convex quadratically-constrained quadratic programs took under

a second, but we have not investigated the scaling behavior of optimization. Note that we do not need

to calculate strong Nash-stable prices to run these experiments. Calculating the prices is easy if you

have knowledge of the previous trading arrangements between agents, but potentially computationally

difficult if you do not, i.e., the scaling behavior is exponential in the number of agents, as far as we

know, and would likely require an heuristic or approximate algorithm in practice. Section 3.3 gives a

high-level description of the payment calculation process.



Chapter 5

Conclusion

We have presented a routing scheme that coordinates control of private infrastructure with the public

grid, improving social welfare while satisfying participation constraints for the agents who control private

infrastructure if we assume that coalitions of agents have the ability to calculate stabilizing payments. We

presented several models of agent behavior under different incentive conditions and tested the efficiency of

various power distribution networks under different models. Using private infrastructure in cooperation

with public infrastructure was shown to be quite important.

Although we were always able to compute “core” stabilizing payments empirically, it remains an open

question whether they always exist. The cooperative game theory model we analyze assumes that the

prices on the public grid are fixed regardless of the behavior of agents on the private grid. Since these

prices reflect long term costs of supplying costs of electricity, this is probably a reasonable assumption

from a short term perspective or if there is a relatively small number of agents on the private grid. It

makes the problem significantly easier to analyze and does not require consideration of the generation

cost curves of the supplying utilities. If the generation cost curve were convex, it should make the

problem easier because there is an “extra” incentive for agents to cooperate, but it would be interesting

to further analyze this version of the problem.

We conjecture that there is a class of cooperative games that generalizes market games to allow

non-independent congestion costs, while retaining the property that core payments always exist. We

are not sure if these games have core payments that are easy to calculate, but if the proof of existence

resembles that of market games, they should be. This class would include at least the power distribution

game with fixed prices on the public grid as described above, but also would include games with other

transmission losses (likely convex). We investigated this problem from many perspectives, but have not
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yet been able to prove either core existence or construct a counter example.

Our experimental results show that coordination is critical—without it, private links can be con-

structed without decreasing the overall network load. Indeed, building a private link may be profitable

for an agent in the short term; but if many agents construct links without coordinating, the return on

investment tends to zero, even when a large number of private links are constructed. Essentially, these

private links are only valuable under the ad hoc and private self-interest models to the extent that they

allow agents to access the available distributed generation. Since the amount of distributed generation

is limited, the construction of further links divides these benefits into smaller and smaller pieces.

Since the grids we simulate have relatively small amounts of distributed generation, the main objective

for routing is to deliver power as cheaply as possible. Although the private grid can reduce the amount

of demand from the public grid, the lack of coordination in the way this occurs prevents it from having

a large impact on overall grid efficiency. When the private lines are used under the cooperative and

integrated models, they can reduce delivery costs by taking additional load off of the public grid. The

ad hoc and private self-interest models do not prevent them from performing this role, but there is no

incentive for agents to do so. If the network were not a net consumer, the role of the grid becomes

primarily to distribute power locally, and the role of the public grid is less critical. In this scenario, the

private self-interest model is likely to perform decently once most agents are connected via the private

network. One avenue for extension is to investigate higher levels of distributed generation to see where

the thresholds for behavior change are.

Another outstanding question is the importance of the assumptions made about network formation.

There are many different random graph models that match the structure of power grids more closely;

for example, those with the small world property, i.e., low average node to node distance, reduce the

average length of power exchanges.

Using our incentive schemes to determine pricing and capital cost-sharing of new (private and public)

infrastructure is a natural future direction. Once a pricing scheme is set for distribution, it becomes

possible to integrate prices into a cost-sharing scheme that in turn creates both a new network formation

process and a paradigm for collective decision making for infrastructure construction—a goal of this line

of inquiry. Collective decision making in this context raises questions about preference elicitation and

truthfulness. This approach requires analysis of capital costs and time horizons, making the analysis

quite different than that provided here for use of infrastructure.

Studying the mechanism design problem in power distribution is also important—here we assume

that agent demands are known (e.g., from historical data) or that agents report their utility functions

truthfully. Asking each agent for a complete utility function may be expensive, impractical, and subject
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to manipulation by profit-seeking agents. From the perspective of the no-losses approximation, it is clear

that there is a great deal of potential strategic behavior near the point where the amounts of supply and

demand are similar. Since prices have to be provided in advance but agent supplies and demands are

not certain until the exchange takes place, there is a risk that supply and demand predictions interact

with proposed prices to create instability. For example, models of dynamic pricing of electricity often

show herding behavior among agents: demand is low so prices are reduced, which causes demand to

become high causing prices to increase, etc. Instability can cause capacity to be underused as well as

system failures when stress is too high.

We focused on background research relating directly to power distribution or markets with transac-

tion costs, whether in computer science, operations research or economics. There are some interesting

connections in other areas to explore. For example, there is the network-flow perspective in operations

research—particularly generalized network flows and minimum cost flows, which both relate directly to

the problem. A study of these areas could clarify the connection between markets on networks and

cooperative game theory, which we hope will shed light on the price calculation problem.

However, it is also possible that the proof of core existence or non-existence for market games with

congestion does not lead to any computational insights. If this is the case, perhaps the pricing computa-

tion problem could be approached via heuristic search or approximation algorithms. It seems that prices

are relatively hard to approximate, but this a question worthy of further investigation. It is also possible

that real-world power distribution networks possess properties that simplify calculation of prices.
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Appendix A

Market Games

In this section, we will provide a brief background on market games and their extensions [24, 20]. Power

distribution games with certain types of losses that on each edge that depend only on the behavior of

the agents at the endpoints can be represented as market games. Market games always have a core

allocation, and it is easy to find (requires solution of a convex optimization problem). We reproduce the

proof of core existence here because it provides a possible avenue for proving that the power distribution

game with congestive losses has a core allocation.

A market game consists of n agents where each agent i has a concave utility function Ui, an initial

allocation of goods ai. We will also assume that the utility functions are increasing, which can be

assured by inducing small slopes to flat parts of utility functions. A coalition of agents C choses an

a final allocation xi to each agent that maximizes the aggregate utility of the coalition subject to the

constraint the the amount of goods present in the final allocation is equal to the amount present in the

initial allocation, i.e. agents can only trade with other agents in the same coalition. The value of the

aggregate utility of the maximizing allocation for coalition C defines the characteristic function v(C).

We want to show that a core allocation always exists, i.e. a payment to each agent ti such that the sum

of the payments is equal to v(N) and for every coalition C,
∑
i∈C ti ≥ v(C).

Theorem 2. Every market game has a core [24].

Proof. For simplicity, we will present the case where only a single good is traded, so that ai and xi are

scalars, not vectors. The value of a coalition C is determined by the value of the solution to the following
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optimization problem:

max
xi,∀i∈N

∑
Ui(xi)

subject to
∑
i∈N

xi =
∑
i∈N

ai

xi ≥ 0, ∀i ∈ N

We will show that there exist market-clearing prices in the following sense.

Definition 2. A price λ is market-clearing if there exists an allocation x∗ = {x∗1, . . . , x∗n} such that:

1. Ui(xi)− λ(xi − ai) subject to xi ≥ 0 is maximized at xi = x∗i for all agents i.

2.
∑
i∈N bi =

∑
i∈N ai.

We will refer to x∗ as an allocation induced by λ.

Lemma 1. 1. Any allocation induced by a market-clearing price maximizes social welfare.

2. Any allocation that maximizes social welfare is induced by a market-clearing price.

Proof. 1. Suppose that B = {b1, . . . , bn} is an allocation that maximizes social welfare and x∗ is an

allocation induced by market-clearing price λ.

Ui(x
∗
i )− λ(x∗i − ai) ≥ Ui(bi)− λ(bi − ai)∑

i∈N
Ui(x

∗
i )−

∑
i∈N

λ(x∗i − ai) ≥
∑
i∈N

Ui(bi)−
∑
i∈N

λ(bi − ai)

using the definition of market-clearing prices. Because
∑
i∈N x

∗
i =

∑
i∈N ai =

∑
i∈N bi by defini-

tion,

∑
i∈N

Ui(x
∗
i ) ≥

∑
i∈N

Ui(bi)

Thus, the allocation induced by a market-clearing price maximizes social welfare.

2. Since we have assumed that the agent’s utility functions are concave and increasing, for any price

λ, Ui(xi) − λ(xi − ai) subject to xi ≥ 0 will have a unique maximum. Suppose that there is an

allocation B′ that maximizes social welfare that does not have a price associated with it. Since B′

is a feasible allocation and we assume that
∑
i ai, at least one agent has b′i > 0. Since there is no
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market-clearing price, U ′i(b
′
i) is not a market-clearing price. Therefore, there is some agent j such

that either:

(a) U ′j(b
′
j) > U ′i(b

′
i). In this case, social welfare could be improved by transferring some of the

commodity from agent i to agent j, so B′ does not maximize social welfare.

(b) U ′j(b
′
j) < U ′i(b

′
i) and b′j > 0. In this case, transferring some of the commodity from j to i

would improve social welfare, so B′ does not maximize social welfare.

To show that the core exists, we will give a payoff vector that is in the core, β, which is defined as:

βi = Ui(bi)− λ(bi − ai)

where B is an allocation that maximizes social welfare and λ is a market-clearing price that induces it.

Consider any nonempty subset S of N , and let YS = {yi : i ∈ N} be a feasible allocation over S which

achieves v(S). Since bi maximizes the user optimization problem,

βi ≥ Ui(yi)− λ(yi − ai)

By summing over i, we will get that the total payoff to agents in S meets or exceeds v(S).

β(S) ≥
∑
i∈S

Ui(yi)− λ
∑
i∈S

(yi − ai) =
∑
i∈S

Ui(yi) = v(S)

because
∑
i∈S(yi − ai) = 0. This shows that β is a stable allocation. To show that it is efficient, we can

sum over the payments for all agents.

β(N) =
∑
i∈N

(Ui(bi)− λ(bi − ai)) =
∑
i∈N

Ui(bi) = v(N)

We can extend market games to allow for a large family of transmission loss functions. The idea for

doing this is to rewrite the new game with loss functions as a market game with more commodities—a

different commodity for each different origin, e.g., a single commodity becomes n commodities, one for

each agent. The loss functions can be different between every pair of agents, and they must be convex

so that the new utility functions are still concave. Most critically for power distribution games, the
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transmission loss incurred between a pair of agents must only depend on what is transmitted between

those two agents. This condition prohibits the natural extension of market games to power distribution

games, where the transmission loss incurred on a link depends on the total amount of power transmitted

over that edge.



Appendix B

Power Distribution Game Without

Resistive Losses

In this appendix, we present a simplified version of the power distribution game described in Chapter 3.

Since this game has no resistive losses, it will be possible to explicitly construct core payments, which

is useful as these payments will be approximately core stable for the full power distribution game if the

losses incurred in practice are low. Therefore, these payments can be viewed as intuitively similar to

core payments in the full game, if they exist.

As in Appendix A, we will use slightly different notation than we use in the rest of the analysis to avoid

conflict between standard notation for graphs and for cooperative games. Let N be the set of agents.

Since there are no resistive losses, it is not necessary to describe the graph structure the agents reside on

as long as the agents are connected and cooperating. Each agent i has a net supply of Qi. Let Q(C) be

the net power surplus of coalition (subset of agents) C, i.e.,
∑
i∈C Qi. Let Q+(C) =

∑
i∈C:Qi≥0Qi and

let Q−(C) =
∑
i∈C:Qi<0Qi. Q

+(C) is the total demand of the net demanding agents in C, and Q−(C)

is the total demand of the net supplying agents in C. Then,

v(C) =


Q(C)ps if Q(C) ≥ 0

Q(C)pb if Q(C) < 0

The value of a coalition is defined as the payment it makes to the grid in order for its total demand

to be satisfied, which could be positive or negative depending on whether it has net negative demand

or net positive demand. We will divide this value into two parts: the underlying cost of satisfying the
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agents and the amount by which that cost is reduced when agents cooperate—the excess utility. Define

the excess utility generated by C as,

e(C) = v(C)−
∑
i∈C

v({i})

= −Q+(C)ps −Q−(C)pb +


Q(C)ps if Q(C) ≥ 0

Q(C)pb if Q(C) < 0

= −Q+(C)ps −Q−(C)pb +


Q+(C)ps +Q−(C)ps if Q(C) ≥ 0

Q+(C)pb +Q−(C)pb if Q(C) < 0

=


Q−(C)ps −Q−(C)pb if Q(C) ≥ 0

Q+(C)pb −Q+(C)ps if Q(C) < 0

We will define the scarce resource to be whichever of demand and supply is limiting the amount of

utility received by the coalition, which is determined by whether Q+(C) or Q−(C) has a smaller absolute

value. We want to show that dividing the excess utility among the agents who have the scarce resource

proportionally to how much of the scarce resource they provide is a core allocation. Agent i’s share of

the excess utility will be denoted si:

si =


(ps − pb)Qi if Q(N) ≥ 0, Qi < 0

(pb − ps)Qi if Q(N) < 0, Qi ≥ 0

0 otherwise

Paying si plus their underlying costs to each agent i will be the proportional scarce allocation, which we

will prove is a core allocation.

Definition 3 (Proportional Scarce Allocation (PSA)). The following ~t is the proportional scarce allo-

cation.

ti = v({i}) + si

=


Qips if Qi ≥ 0

Qipb if Qi < 0

+


(ps − pb)Qi if Q(N) ≥ 0, Qi < 0

(pb − ps)Qi if Q(N) < 0, Qi ≥ 0

0 otherwise
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Theorem 3. The proportional scarce allocation ~t is a core allocation for the power distribution game

with no resistive losses.

Proof. We need to show that the allocation is efficient, i.e.
∑
i∈N ti = v(N), and that each subcoalition’s

constraint on the sum of the payments to its members is satisfied, i.e.
∑
i∈C ti ≥ v(C),∀C ∈ 2N . To see

that the allocation is efficient, we can show that the sum of the payments equals the value of the grand

coalition.

∑
i∈N

ti =
∑
i∈N

v({i}) +
∑
i∈N

si =
∑
i∈N

v({i}) +
∑
i∈N


(ps − pb)Qi if Q(N) ≥ 0, Qi < 0

(pb − ps)Qi if Q(N) < 0, Qi ≥ 0

0 otherwise

=
∑
i∈N

v({i}) +


(ps − pb)Q−(N) if Q(N) ≥ 0

(pb − ps)Q+(N) if Q(N) < 0

=
∑
i∈N

v({i}) + e(N) = v(N)

To show that each subcoalition’s constraint is satisfied, consider an arbitrary subcoalition C. The sum

of the payments to members of C is

∑
i∈C

ti =
∑
i∈C

v({i}) +
∑
i∈C

si =
∑
i∈C

v({i}) +
∑
i∈C


(ps − pb)Qi if Q(N) ≥ 0, Qi < 0

(pb − ps)Qi if Q(N) < 0, Qi ≥ 0

0 otherwise

=
∑
i∈C

v({i}) +


(ps − pb)Q−(C) if Q(N) ≥ 0

(pb − ps)Q+(C) if Q(N) < 0

=
∑
i∈C

v({i}) +


e(C) if (Q(N) ≥ 0, Q(C) ≥ 0) or (Q(N) < 0, Q(C) < 0)

(ps − pb)Q−(C) if Q(N) ≥ 0, Q(C) < 0

(pb − ps)Q+(C) if Q(N) < 0, Q(C) ≥ 0

Consider the three cases separately.

1.
∑
i∈C ti =

∑
i∈C v({i})+e(C) = v(C). In this case, the sum of the payments paid to the members

of C exactly equals the value of C.
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2.
∑
i∈C ti =

∑
i∈C v({i}) + (ps − pb)Q−(C). Since Q(C) < 0,

(ps − pb)Q−(C) > (pb − ps)Q+(C) = e(C)

Therefore,
∑
i∈C ti >

∑
i∈C v({i}) + e(C) = v(C).

3.
∑
i∈C ti =

∑
i∈C v({i}) + (pb − ps)Q+(C). Since Q(C) ≥ 0,

(pb − ps)Q+(C) ≥ (ps − pb)Q−(C) = e(C)

Therefore,
∑
i∈C ti ≥

∑
i∈C v({i}) + e(C) = v(C).

In this allocation, the agents on the scarce side of the market (i.e., supply or demand) divide the

benefits of cooperation proportionally amongst themselves according to how much of the scarce resource

each member has. It is the unique core allocation in many instances of this coalitional game. The

following observations provide some conditions that must hold for other (non-PSA) core allocations to

exist.

Observation 1. The following are necessary conditions for a non-singleton core in the no losses game:

1. Existence of veto player. The surplus side of the market has at least one player who would reduce

the excess utility of the grand coalition if he unilaterally refused to participate, i.e. his endowment

is greater than the difference between the amounts of scarce and surplus resource.

2. Existence of insecure player. The scarce side of the market has at least one player whose resource

endowment is less than that of the non-veto players on the surplus side.

Proof. 1. Consider an arbitrary market that does not satisfy the veto player property. Removing

any player from the surplus side does not decrease the excess utility of the grand coalition. Thus,∑
i∈N\{j} si = e(N) for all players j on the surplus side. Therefore, sj = 0 for all players j on

the surplus side. Since the surplus side has more resources than the scarce side, every player on

the scarce side can threaten to defect with the entire surplus side, thereby guaranteeing that they

receive all surplus that they generated. Therefore, the unique core allocation is the PSA if there

are no veto players.

2. Consider an arbitrary market that does not satisfy the insecure player property. Non-veto players

cannot receive a positive payoff by the logic in the preceding proof. Thus, each player on the scarce
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side can threaten to defect with all non-veto players, thereby assuring that each receives all of the

excess utility that he generates.

Observation 2. 1. If there is a single veto player and at least one insecure player, the core is non-

singleton.

2. If there is a single insecure player and at least two veto players, the core may be singleton or

non-singleton.

Proof. 1. Once the insecure players have received their minimum payments given the magnitude of

the non-veto players, the remaining excess utility can be given to the veto player.

2. Consider a game with one player of supply 3, 2n− 3 players of supply 1, one player of demand 1,

and n players of demand 2. Supply 3 is insecure with a minimum payment of one unit of excess

utility. The supply 1 players are all secure, receiving one unit each. This leaves 2 units left to

distribute, which must be received by every pairing of supply 3 and demand 2. Therefore, supply

3 receives 3 units, and the core is singleton for this class of examples.

Consider a game with one player of supply 2n−1 and n players of demand 2. Allocate 2n−2 units

of excess utility to the player of supply 2n−1, then divide the remaining unit equally among the n

players of demand 2. If there are n− 1 or fewer players of demand 2 in a coalition with the supply

player, they will have received enough units of excess utility, and the grand coalition is satisfied

because the allocation is efficient. Therefore, the core in this class of examples is non-singleton.


