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ABSTRACT
Previous approaches to adversary modeling in network security

games (NSGs) have been caught in the paradigm of first building a

full adversary model, either from expert input or historical attack

data, and then solving the game. Motivated by the need to disrupt

the multibillion dollar illegal smuggling networks, such as wildlife

and drug trafficking, this paper introduces a fundamental shift in

learning adversary behavior in NSGs by focusing on the accuracy

of the model using the downstream game that will be solved. Fur-

ther, the paper addresses technical challenges in building such a

game-focused learning model by i) applying graph convolutional

networks to NSGs to achieve tractability and differentiability and ii)

using randomized block updates of the coefficients of the defender’s

optimization in order to scale the approach to large networks. We

show that our game-focused approach yields scalability and higher

defender expected utility than models trained for accuracy only.
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1 INTRODUCTION
Many real-world security problems present the challenge of how

to allocate limited resources to large number of important targets,

including infrastructure [14], transportation systems [33], urban

crime [48], and web security [43]. Stackelberg security games (SSGs)
are frequently used to study the interaction between defender and

attacker and optimally allocate the security resources accordingly.

Network security games (NSGs) [11, 38, 44], a natural extension

of SSGs, describe a strategic adversarial interaction between an

attacker and a defender on a graph. The attacker’s goal is to take a

path from a starting location to a target without being caught by

the defender. The defender declares (i.e., attacker surveils) a mixed

strategy of how she will deploy her security resources to the edges

of the network. NSGs are relevant in many real-world settings such

as wildlife conservation [9, 25], infrastructure protection [21], and

nuclear material smuggling [29, 34].
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One key challenge in applying NSGs in the real world is learning

an adversary’s behavior from historical data. Past works [1, 5, 30]

in security games have shown that constructing bounded rational-

ity adversary models from data greatly improves performance of

deployed models because attackers often behave quite differently

from how rational models would suggest. A particular motivation

for this paper is wildlife smuggling [10, 37, 49], a natural NSG do-

main where large amounts of historical attack data is available in

the form of past seizures.

Almost all previous work on security games approaches the

problem of adversary modeling by first building a full adversary

model that aims to predict the adversary behavior as accurately as

possible [2, 7, 9, 32]. In early work, the judgments of human experts

were used to estimate the adversary’s preferences [40]. Later, in do-

mains where historical attack data was available, machine learning

was used to construct models instead (starting from Letchford et

al. [24]). In NSGs, building an adversary model to maximize accu-

racy has several key limitations. First, the model is selected without

any consideration of the impact of errors downstream. Prediction

errors on paths that are frequently taken by the adversary have

a large impact on defender utility, but are weighted the same as

errors on paths that are rarely taken. Secondly, standard adversary

models require human feature engineering to apply to NSGs due

to a great variety of paths from the attacker’s starting location to

each potential target [13, 16, 17, 46]. Once the adversary model is

determined, the following defender utility maximization problem

can be solved by any optimization techniques, including bilevel

optimization [25], branch and cut [12], and double oracle [21].

Our approach represents a fundamental shift: we take an end-

to-end, game-focused approach, focusing on learning a model that

yields a high defender utility. More specifically, we take the down-

stream defender utility maximizatoin problem into account while

learning the adversary model. To that end, we use a graph convolu-

tional neural network architecture to learn the adversary’s behavior,

which allows us to overcome both of the issues of prior work. First,

assuming we can differentiate through the defender’s optimization

problem, we can train the entire model end-to-end because the pre-

dictive model is differentiable, i.e., to take the optimization problem

into account while training. Second, the graph convolutional net-

work automatically extracts features from the graph, meaning that

hand engineering is not necessary. Nevertheless, several challenges

must be overcome to implement this approach: principally, poor

scalability of naive end-to-end training and non-convexity of the

game-focused objective.

A summary of our contributions is as follows: first, we construct

a graph convolution-based adversary model for NSGs. This model

is fully differentiable, does not require manual selection of path

features, and transmits target value information over the network.



Second, we develop a randomized block update scheme for differ-

entiating through optimization problems, whose computation time

is usually more than quadratic in terms of the number of variables

due to the computation of Hessian matrix and matrix inversion.

Such computational issue is especially influential for optimization

problems with a huge number of variables, which is commonly

seen in NSGs as every edge corresponds to one individual decision

variable. In these cases, randomized block update can largely re-

duce the time complexity. We further provide an approximation

guarantee relative to the complete derivatives, and we show em-

pirically that our approach greatly improves scalability. We also

show that through judicious use of the standard predictive loss as

regularization, we can escape local minima in the end-to-end loss

function.

Related Work. There is a rich literature on learning adversary

behaviormodels in Stackelberg security games (SSGs) (starting from

Letchford et al. [24]), but learning in NSGs has received much less

attention. While SSGs generalize NSGs, the scalability concerns

are quite different because reducing NSGs to SSGs may create

exponentially many targets—one for each path to the target in

the NSG. Thus, applying standard attacker bounded rationality

models, such as quantal response (QR) [26, 27] and subjective utility

quantal response (SUQR) [32] is nontrivial. Yang et al. [46] and Ford

et al. [13] reduced NSGs to SSGs by considering each individual

path as an attacker pure strategy. Their approach scales poorly,

creating exponentially many paths in many networks. It also relies

on hand-crafting path features that capture adversary behavior

well. Other authors have developed models that use Markovian

dynamics to model the attacker. Gutfraind et al. [16] and Abbasi et

al. [2] assume the attacker does not receive any information beyond

the neighboring nodes—attackers do not make any decisions that

are more long term than a single timestep. Gutfraind et al. [17]

takes the opposite approach: attackers follow a path that minimizes

some cost (such as the risk of being caught) with randomness in

the individual decisions. This adds some global information, but

requires the model designer to specify the choice of cost function

in advance.

Past work in adversary modeling in SSGs has viewed the problem

of constructing an adversary model and solving the defender’s op-

timization as completely separate problems and does not consider

the impact of errors in the defender model on the quality of the

optimization outcome, with a few exceptions. Sinha et al. [39] and

Haghtalab et al. [18] relate the predictive accuracy of the learned

model to the defender’s expected utility. In the case of Haghtalab

et al., this view motivates the use of a non-standard loss function

to achieve better utility. However, even these papers take a funda-

mentally two-stage approach: the model is trained independently

of any information about the game itself, such as the defender’s

utilities. Perrault et al. [36] takes a game-focused approach to SSGs,

but the issues that arise in NSGs are different and require a greater

focus on scalability.

A major challenge in our work is differentiating through the

nonconvex defender optimization problem. Recent work has de-

veloped general approaches for differentiating convex problems

[3]. Perrault et al. [36] present an approach for a limited class of

nonconvex problems. Our setting is challenging in two ways. First,

we have a decision variable for each edge in the network and these

approaches scale poorly (more than quadratically) in the number

of variables. Second, our setting is more severely nonconvex than

that of Perrault et al.

2 BACKGROUND
Stackelberg Security Games. A Stackelberg security game (SSG)

[40, 47] is a two-player sequential game. The defender aims to

protect a set of targets T with limited budget b which can only

protect up to b targets. Each target t ∈ T is associated with a

defender penaltyU d (t) ≤ 0 and an attacker rewardU a (t) ≥ 0when

the target is successfully attacked. For simplicity, we assume there is

no reward and penalty when the attacker is caught or fails to reach

the target. Once the defender commits to her mixed strategy, the

attacker can conduct surveillance to observe the defender’s mixed

strategy and choose one target to attack accordingly. We denote

the defender’s mixed strategy by x ∈ R |T |
, where 0 ≤ xt ≤ 1

denotes the marginal probability that target t is protected. The
budget constraint can be written as 1⊤x ≤ b. On the attacker side,

we use q(x, ξ ) to represent the attacker’s behavior, where qt (x, ξ )
(or qt if there is no ambiguity) is the probability of attacking target

t , and ξ is the available features revealed to both the defender and

the attacker, e.g., the attacker payoff value U a (t) ∀t ∈ T can be

considered as a feature. Notice that q is a function of the defender

strategy x and the feature ξ , which implies that the attacker can be

reactive to the defender strategy and select the target based on the

underlying feature. We can write the defender’s utility function as:

DefU(x; q) =
∑

t ∈T
qt (x, ξ )U d (t)(1 − xt ). (1)

This includes the case where the attacker is fully rational, where

qt (x, ξ ) = 1 if t = argmaxt ′∈T (1 − xt ′)U a (t ′) else 0.

Bounded Rationality in SSGs. Quantal response (QR) [26] models

the attacker’s behavior by setting the probability that each target is

attacked to be proportional to the exponential of its payoff scaled by

a constant. Subjective utility quantal response (SUQR) [32], which fits
data better than QR in practice, sets the probability proportional to

the exponential of a subjective utility or an attractiveness function

of the attacker:

qt (x, ξ ) ∝ exp(−ωxt +Φ(t , ξ )), (2)

where ω > 0 is a constant representing the attacker’s risk aversion

andΦ(t , ξ ) denotes the subjective utility of target t given feature ξ .

Network Security Games. Network security games (NSGs) [11, 31]
are SSGs played on a graph structure. Given an undirected (or

directed) graphG = (V ,E), the defender allocates a limited number

of checkpoints along edges in E, while the attacker tries to find

a path from a source to a target without being caught. We divide

the set of all vertices V into targets T = {t1, t2, ..., t |T |} and non-

targets S = {s1, s2, ..., s |S |} (or potential sources). At each time, the

attacker appears in one potential source s ∈ S drawn from a given

prior distribution π ∈ R |S | . From the defender’s perspective, the

defender strategy xe ∀e ∈ E is the marginal probability of covering

edge e . Similarly, the defender has a limited number of resources b
to protect the targets.

We use α = {v1,v2, ...,v |α |} to denote a path which starts from

a source v1 ∈ S and ends with a target v |α | ∈ T . We use A



to denote the set of all possible paths from any source to any

target, which could be exponentially many or infinitely many

when the graph contains any cycle. Similar to SSGs, let U d (t) be
the defender’s payoff when the target t is attacked successfully

and U d
caught

be the defender’s payoff when the attacker is caught.

Let U d = {U d (t1), ...,U
d (t |T |),U

d
caught

} ∈ R |T |+1
denote the de-

fender’s payoff vector. In addition, we assume each node v ∈ V

has a node feature vector ξv ∈ RD consisting of characteristics of

node v , e.g., the attacker payoff of the current nodeU a (v) if v ∈ T .

We use ξ ∈ R |V |×D
to denote all the node features in graph G.

Bounded Rationality in NSGs. In this paper, we assume the at-

tacker to be boundedly rational, where the attacker’s behavior

is characterized by a function q(x, ξ ), where qα (x, ξ ) represents
the probability of choosing path α under coverage x and feature

ξ . Given the coverage x, we can compute the defender expected

utility:

DefU(x; q)=
∑

α ∈A
qα (x, ξ )U d (α)

∏
e ∈α

(1 − xe ), (3)

where U d (α) = U d (t) is the defender utility when the attacker

successfully passes through α to attack its target t .
The difference between Equation 1 and 3 is that there aremultiple

layers of protection along the path α . Therefore the probability of

successfully attacking a target is the product of all the success

probabilities of crossing each edge e in the path. The defender’s

optimization problem is generally hard. For example, if the function

q(x, ξ ) is given by full rationality restricted to only polynomial

many paths A, the defender optimization problem is NP-hard [21].

Furthermore, the set of all possible paths A could be exponentially

large or infinitely many when there is any cycle.

Graph Convolutional Networks. There has been much recent at-

tention paid to graph convolutional networks (GCNs) [19, 22, 28].
Given a graph, the convolutional layers in GCNs can transmit in-

formation through message passing, which allows information to

propagate to distant nodes and be aggregated in a non-linear fash-

ion. GCNs are much more expressive than hand-crafted features. In

this paper, we apply GCNs, parameterized by θ , to map each node

v ∈ V and the entire node features ξ with graph structure to a scalar
Φ(v, ξ ;θ ), which represents the extent that the attacker is “pulled”

toward that node. The message passing in GCNs is similar to the

information gathering conducted by the adversary, where a rough

understanding of faraway targets is available to the adversary.

3 ADVERSARY MODEL
Our attacker model is Markovian—the probability of using a path

α can be decomposed into the product of transition probabilities:

qα (x, ξ ) =
∏

e ∈α
qe (x, ξ ). (4)

Motivated by the SUQR model, we propose a local SUQR model,

which assumes the probability that the attacker moves from u to

v using edge e = (u,v) is proportional to exp(−ωxu→v − ηyv +
Φ(v, ξ ;θ )) ∀v ∈ Nout(u).Φ(v, ξ ;θ ) represents the subjective utility
or attractiveness of nodev parameterized byθ , which can be learned
by GCN. yv , with a weight η ≥ 0, represents the downstream

future risk or coverage perceived by the attacker at nodev . In other

words, the attacker tends to move toward the target with higher

Figure 1: The convolutional layers of GCNs can propagate
and aggregate information in a non-linear fashion. In NSGs,
such message passing ability corresponds to the attacker’s
ability of conducting surveillance to neighbor nodes.

attractivenessΦ(v, ξ ;θ ), but avoids using the edge e = (u,v) ∈ E
with higher coverage xu→v and avoids moving towards nodes v
with higher future risk yv .

Given a defender coverage strategy, there are many heuristic

ways to obtain a measure of future risk. For example, we can follow

the above Markovian behavior without the effect of the future risk,

where the probability of being caught can be analytically computed

efficiently. Another heuristic is the shortest distance to any target,

as suggested by Gutfraind et al. [17]. The only restriction put on

the choice of the future risk is differentiability.

We can compute the transition probability from u to any v ∈

Nout(u) as:

qu→v (x, ξ ;θ ) =
exp(−ωxu→v − ηyv +Φ(v, ξ ;θ ))∑

v ′∈Nout(u) exp(−ωxu→v ′ − ηyv ′ +Φ(v ′, ξ ;θ )
.

(5)

Unlike previous boundedly rational models [13, 46], we do not need

to enumerate all the feasible paths, which could be exponentially

large. Unlike the nonreactive Markovian model [16], our model is

reactive to the defender’s strategy. Unlike Gutfraind et al. [17], we

are not limited to noisily following a shortest path.

In local SUQR, the path structure is automatically encoded in

the reactive Markovian behavior. Since the edge coverage effect is

involved in the transition probability, the probability of taking a

path is also exponentially proportional to the total coverage along

the path, which is also included in other bounded rational models

[13, 46]. The flexibility and the generalizability of the attractiveness

function allow us to apply any graph learning algorithms to extract

the adversary behavior. Compared to previous hyperparameters

tuning models, our model is more expressive and can adapt to a

broader range of adversary behavior.

4 PROBLEM STATEMENT
For each instance, a directed graph G = (V ,E) with node features

ξ is presented to both the defender and the attacker. The attacker

has a hidden rationality function q∗, which is a function of node

features ξ and the defender coverage x. The defender first chooses
a coverage {xe }e ∈E under the budget constraint 1⊤x ≤ b. The
attacker observes x and then behaves based on his own rationality

function q∗. We assume that the defender has access to historical

play between the defender and the attacker, which can be used to

form an estimate of the adversary behavior. The goal of the defender

is to maximize the received expected reward.



5 TWO-STAGE LEARNING FOR NETWORK
SECURITY GAMES

The main comparison of the remainder of the paper is between

our GCN-based adversary model implemented as two-stage vs. our

game-focused methods. Thus, we briefly describe the two-stage

approach that we consider.

Predictive Model. A two-stage approach fits the GCN-based at-

tractiveness function Φ(v, ξ )∀v ∈ V to minimize the difference

between predicted behavior q given by Equation 5 and the corre-

sponding true attacker behavior q∗. Given the attacker behavior q∗

and a prediction q, we can define the loss by either matrix norm

or the KL-divergence of the path distribution inferred by two be-

haviors under previous coverage x and features ξ . These losses

are generally infeasible to compute since there are infinite many

possible paths. In practice, however, we often have paths sampled

from the true behavior q∗ we can use to approximately compute

the KL-divergence between two behaviors. Given the choice of loss

function L, we can train a model q by minimizing the average loss:

E(x,ξ ,q∗)∈DL(q∗, q; x, ξ ) (6)

Prescriptive Model. Given a graph G, node features ξ , and pre-

dicted attacker behavior q, the defender’s goal is to choose an

optimal coverage x∗ satisfied the budget constraint to maximize

her own objective value.

When the defender strategy x is chosen, the attacker follows his

own Markovian behavior q(x, ξ ). But due to the allocated coverage,
the attacker will be caught with probability xe when he passes

through edge e . This can be cast as an absorbing Markov chain,

where the probability of crossing an edge e is qe (x, ξ )(1 − xe ), and
the rest of the probability the attacker will be caught and turned

into a dummy caught state v
caught

. We also assume that once the

attacker reaches either any terminal or caught state v
caught

, the

attacker cannot go back to any other states, i.e., these are absorbing

states. Therefore, given a coverage x, we can model the attacker’s

behavior as an absorbing Markov chain. We can analytically com-

pute the corresponding defender utility. To align with the standard

minimization formulation, we denote the negative defender util-
ity by f (x, q). For ease of notation, we omit the presence of node

features. The optimization problem is given by:

minx f (x, q) (7)

s.t. 1⊤x ≤ b, 0 ≤ xe ≤ 1 ∀e ∈ E

Unfortunately, the function f is neither convex nor submodular

when the attacker is reactive. The standard approach is to apply

constrained black-box optimization solvers to solve the problem,

e.g., Sequential Least SQuares Programming (SLSQP) [6, 23].

6 NAIVE GAME-FOCUSED LEARNING FOR
NETWORK SECURITY GAMES

In general, a good predictive model does not necessarily imply

a high defender utility in the second stage. Sometimes a slightly

inaccurate prediction might lead to a better final decision. This

happens frequently especially when the predictive model cannot

perfectly represent the ground truth. For example, in our case, the

model relies on theMarkovian assumption and SUQR assumption in

Algorithm 1: Naive Game-focused Learning [36]

1 Input: Training data D, initialized GCN(·, ·;θ ) : V × ξ → R

2 while until converge do
3 for (G, q∗, ξ ) ∈ D do
4 Compute prediction q in Eq. 5 byΦ = GCN(V , ξ ;θ )

5 Find optimum xopt of Optimization 7

6 Q =
∂2f (x,q)

∂x2 |x=xopt ,p =
∂f (x,q)

∂x |x=xopt −Qx∗

7 Re-solve QP: x∗ = argmin

x feasible

1

2
x⊤Qx + x⊤p

8 Update θ by gradient
df (x∗,q∗)

dx∗
dx∗
dp

dp
dθ

9 Return: trained model GCN(·, ·;θ )

Equation 5, which might not be able to fully recover the underlying

attacker behavior.

Game-focused learning, instead, can directly optimize the final

solution quality by back-propagating from the final solution quality

all-the-way back to the predictive model. Game-focused learning

has been proven to be able to outperform a standard two-stage

learning approach [36], finding a shortcut to better final solution

quality. However, the major issue of back-propagation is the non-

differentiable optimization layer in the prescriptive state. Amos et

al. [4] provides a method to differentiate through the optimization

layer when the optimization program is convex; Perrault et al. [36]

instead used quadratic function as a surrogate to deal with the case

when the optimization program is non-convex.

More specifically, the idea of tackling non-convex function in

Perrault et al. [36] is to approximate the non-convex function by

a quadratic function around a local minimum xopt using Taylor

expansion, which can be written as:

f (x, q) ≈ f (xopt, q) + (∆x)T
∂ f

∂x
+
1

2

(∆x)T
∂2 f

∂x2
(∆x) (8)

where ∆x = x−xopt. They use this approximate quadratic program

(QP) as a surrogate of the non-convex optimization problem, where

the optimal solution x∗ of QP matches the local optimum xopt
computed before. This allows us to differentiate through a QP and

compute the gradient of optimal solution x∗ with respect to the

linear coefficient p =
∂f
∂x |x=xopt .

d f (x∗, q∗)
dθ

=
d f (x∗, q∗)

dx∗
dx∗

dp

dp

dθ
(9)

where p =
∂f
∂x |x=xopt is a function of q with

dp
dθ =

dp
dq

dq
dΦ

dΦ
dθ can be

decomposed and computed. Equation 9 gives us the gradient of the

final solution quality with respect to the model parameter θ , which
allows us to directly run stochastic gradient descent end-to-end.

We apply this approach to our domain. The algorithm is sketched

in Algorithm 1 and Figure 2(b).

Issues of Game-focused Learning. Although game-focused learn-

ing ideally can achieve better final performance compared to two-

stage learning, in this section, we point out two main issues that

arise when this game-focused learning is applied to NSGs: scalabil-

ity and non-convexity.



(a) Two-stage method (b) game-focused method

Figure 2: Two-stage method trains the behavior model by minimizing the predictive loss, while the game-focused method
trains the behavior model by optimizing the final decision quality.

• Scalability: In the forward and backward paths of solving

QP (Equation 8), we need to solve and be able to back-propagate

through the QP, which involves the computation of matrix inverse.

Taking matrix inverse grows between quadratic and cubically as

the size of the decision variable x grows. Moreover, in order to com-

pute the Taylor expansion 8, we need to compute the Hessian
∂2f
∂x2

explicitly, which is usually the major bottleneck of the computation

cost when the target function f is complex.

•Non-convexity: In the non-convex setting, the objective function
f (x, q) can be non-convex in both x and q. The gradient-based

approaches rely on updating model parameters θ and thus q to

improve the solution quality. However, since the f is non-convex

in q, it could create non-convex searching space for gradient-based

approaches, which could easily get stuck in local optimum or saddle

points. Two-stage methods escape this problem because their loss

function L(q, q∗) in Equation 6 is convex, which gradient-based

approaches can more easily handle.

7 IMPROVING NAIVE GAME-FOCUSED
LEARNING

In this section, we provide a scalable randomized block update

approach to resolve the scalability issue, which also suggests a

block game-focused algorithm as a scalable version of game-focused

learning approach. To resolve the non-convexity issue, we apply

the intermediate loss as a regularization, which helps game-focused

methods escape local minimums. We further provide theoretical

guarantees to link the randomized block update to the naive game-

focused learning approach.

7.1 Block Game-focused Learning
Instead of using the entire Taylor expansion (Equation 8) to approx-

imate the objective function locally, we can use a partial Taylor

expansion with respect to a subset of variables to approximate it:

f (x, q) ≈ f (x∗, q) + (∆xC )T
∂ f

∂xC
+
1

2

(∆xC )T
∂2 f

∂x2C
(∆xC ), (10)

where C ⊂ {1, 2, ..., |E |} is a subset of indices and xC is the corre-

sponding truncation over indices C of the entire variables x. Equa-
tion 10 is equivalent to freezing the variables outside of C and

applying Taylor expansion to the rest of them. In this formulation,

we only need to compute the Hessian with respect to xC . When

the size of C is significantly smaller than the original variable size

|E |, it can save the computational time of Hessian quadratically.

Furthermore, while back-propagating through the KKT conditions,

Algorithm 2: Block Game-focused Learning

1 Input: Training data D, initialized GCN(·, ·;θ ) : V × ξ → R,
block size k

2 while until converge do
3 for (G, q∗, ξ ) ∈ D do
4 Compute prediction q in Eq. 5 byΦ = GCN(V , ξ ;θ )

5 Find optimum xopt of Optimization 7

6 Sample C ⊂ {1, 2, ..., |E |} with |C | = k

7 QCC =
∂2f (x,q)
∂x2C

|x=xopt ,pC =
∂f (x,q)
∂xC

|x=xopt −QCCx∗C
8 Re-solve QP: x∗C = argmin

xC feasible

1

2
x⊤CQCCxC + x⊤CpC

9 Update θ by gradient
df (x∗,q∗)

dx∗C

dx∗C
dpC

dpC
dθ

10 Return: trained model GCN(·, ·;θ )

the QP formulation of Equation 10 results in a smaller size of qua-

dratic term, which can reduce the computation of matrix inverse.

The block-wise chain rule can be written as:

d f (x∗, q∗)
dθ

≈
d f (x∗, q∗)

dx∗C

dx∗C
dpC

dpC
dθ

(11)

where p =
∂f
∂xC

|x=xopt ,
dpC
dθ =

dpC
dq

dq
dΦ

dΦ
dθ . When the block size is

smaller, the approximation can be more inaccurate. But we will

show in the later section that the block gradient is an approximation

to the entire gradient.

All the above reasons suggest a randomized block update algo-

rithm, which is described in Algorithm 2. The algorithm randomly

samples a block of variables to computeHessian and back-propagate

accordingly. In comparison, Algorithm 1 requires to compute the

entire Hessian matrix Q =
∂2f (x,q)

∂x2 |x=xopt , which is usually very

expensive. Instead, Algorithm 2 only requires the computation of

a block Hessian QCC =
∂2f (x,q)
∂x2C

|x=xopt , which can save at least

quadratic amount of Hessian computation depending on the block

size. It can also reduce the running time of the following quadratic

program due to reducing the number of variables.

7.2 Block Selection
In Algorithm 2, the idea of block game-focused learning is to restrict

the focus to a subset of variables and to update accordingly. The

choice of the sampled block could affect the convergence rate. Here

we propose three block selection approaches: i) random approach



selects block uniformly at random; ii) coverage-based approach

randomly selects indices with probability proportional to x∗, which
guarantees that there is space for the variables in the block to

reallocate coverage; iii) derivative-based approach selects indices

with probability proportional to the magnitude of the derivatives

df (x∗,q)
dx∗i

, which is the weight put on the chain rule.

7.3 Regularization
Another issue associated with the naive game-focused learning

method is the non-convex objective function, where gradient-based

approaches can encounter issues of local optimums and saddle

points. Instead, the two-stage approach optimizes the intermediate

loss, which is generally convex in the prediction space. Therefore,

we propose to add a weighted two-stage loss as a regularization to

smoothify the final objective value. As the training epochs increase,

the weight put on the two-stage loss drops exponentially with a

decay rate 0.95, pulling the learning back to game-focused methods.

This regularization technique helps resolve the non-convexity issue

of naive game-focused method, which can achieve better perfor-

mance afterward.

7.4 Approximation Guarantees
In this section, we will show that both Algorithm 1 and 2 have 0

gradient when the prediction perfectly matches to the ground truth,

showing that both algorithms are stable at the global optimum.

Later on, we will show that Algorithm 2 is an approximate version

of Algorithm 1. This shows that our block game-focused approach

can not only achieve scalability due to the reduction in Hessian

and QP computation, but it is also aligned with the standard naive

game-focused approach with theoretical guarantees.

Theorem 7.1. When the intermediate predictionmatches the ground
truth, i.e., q(·, ·;θ∗) = q∗, we have df (x∗,q∗)

dθ |θ=θ ∗ = 0 for both Algo-
rithm 1 and Algorithm 2 with any block C .

This theorem implies that if the predictive model is rich enough

and able to reach the ground truth, then the gradient computed

in both algorithms is equal to 0 at the ground truth. So if we can

avoid getting stuck by local optimum, then both algorithms will be

able to learn the ground truth. This is also true for the two-stage

learning when the loss is defined as any convex norms.

Theorem 7.2. The quadratic programs in Algorithm 1 and Algo-
rithm 2 share the same primal solutions on the blockC . They also share
the same dual solution on the non-degenerate constraints containing
at least one variable in the block.

When restricting to variables inside the block, there are some de-

generate constraints containing only variables outside of the block,

which are always satisfied in the block QP. Thus, there is no restric-

tion put on the dual variable corresponding to these degenerative

constraints, which we have no control on them. But in this theorem,

we prove that the dual solution to the other valid constraints will

match to the dual solution given by the QP in Algorithm 1.

Theorem 7.3. Given the primal solution x∗ and the dual solution
λ∗ of the quadratic program in Algorithm 1 with linear constraints

G,h,A,b, the Hessian Q =
∂2f
∂x , linear coefficient p = ∂f

∂x , and the

sampled indices C ⊂ {1, 2, ..., |E |}, the gradient
dx∗C
dpC

∈ R |C |× |C |

computed in Algorithm 2 is an approximation to the block compo-
nent of the gradient dx

∗

dp ∈ R |E |× |E | computed in Algorithm 1. More
specifically,



(dx∗dp

)
CC

−
dx∗C
dpC





 ≤ ∆ + ∆C
µmin(Q)

max(λ∗, 1)


K−1

CC


 



(dx∗dp

)
CC






(12)

where ∆ =


G⊤G +A⊤A



 ,∆C = 


Q⊤

CC
QCC




, and µmin(Q) is the
smallest eigenvalue of positive definite matrix Q . KCC is the KTT
matrix given by the quadratic program in Algorithm 2.

The ∆ in the numerator is a constant that only depends on the

constraint matrices. The other term ∆C depends on the choice of

blockC , whichmeasures themagnitude of the off-diagonal elements

of the Hessian matrix Q . This is usually a small term when the

Hessian Q is diagonally dominant. Another interesting finding is

that this bound depends on the convexity of the Hessian Q . When

the Hessian is more convex, then the smallest eigenvalue of Q is

also larger, giving a stronger bound in Theorem 7.3. The last term

K−1
CC measures the stability of the KKT matrix KCC . We can get

a good bound if the KKT matrix KCC is far from singular. Greif

et al. [15] provides various bounds on the eigenvalues of the KKT

matrix. However, in general, poor constraints can still lead to a

KKT matrix close to singular. It also indicates that a good choice of

C can imply a more stable KKT matrix, leading to a better estimate

in Theorem 7.3.

Theorem 7.3 also implies an alternative explanation to Algo-

rithm 2, where the gradient in Algorithm 2 is an approximation to

the partial gradient with indices C in Algorithm 1:

d f (x∗, q∗)
dx∗C

(
dx∗

dp

)
CC

dpC
dθ

≈
d f (x∗, q∗)

dx∗C

dx∗C
dpC

dpC
dθ

(13)

which implies that Algorithm 2 can be thought as an approximate

block-wise gradient descent of Algorithm 1, which relates to the

literature of block coordinate gradient descent [35, 42].

8 EXPERIMENTS
In this section, we compare two-stage (TS), naive game-focused
(naive-GF) mentioned in Section 6, block game-focused (block-GF), and
regularized block game-focused (reg-block-GF) methods on synthetic

data to show that our block game-focused and regularized block

game-focusedmethods can achieve better performance especially in

larger instances. These twomethods are also able to scale up to large

instances, where the naive game-focused method cannot. Lastly, we

study the convergence and scalability of the block game-focused

and regularized block game-focused methods with different block

sizes and block sampling methods. This allows us to choose the

right block size to balance between solution quality and scalability.

8.1 Synthetic Data Generation
8.1.1 Graph and features: we first randomly generate a graph

G with various node sizes, 5 random sources with uniform ini-

tial distribution π , and 5 random targets with defender penalties

U d (t) ∀t ∈ T drawn from [−10,−5] uniformly at random. We focus

on stochastic block model [20] and geometric graphs [45], which



can respectively model community structures and physical road

networks
1
. For each node in the graph, we draw an attractiveness

value, depending on the shortest distance to the targets plus a uni-

form noise, as the attacker’s unbiased preference. We also randomly

generate the past coverage x subject to budget constraints. To gen-

erate the node features ξ , we feed the private attractiveness values

to a randomly initialized GCN, where the GCN will output a fixed

size vector per node as our node features ξ . A different level of

Gaussian noise was added to the features to model the noise in the

real-world scenario.

8.1.2 Attacker behavior: we choose ω = 4 as the risk aversion

parameter suggested by Perrault et al. [36] and Abbasi et al. [1],

and set η = 0 to ignore the future risk factor for the sake of simplic-

ity. For each instance with given attractiveness and the defender

coverage, we simulate 100 attacks by initializing the attacker at

one of the sources and following the localized SUQR behavior de-

scribed in Section 3 until the attacker reaches to one of the targets.

These sampled paths Λ are used to reconstruct a Markovian behav-

ior: q∗u→v (x, ξ ) B
| {e=(u,v),e ∈α,α ∈Λ} |

| {e=(u,w ),e ∈α,α ∈Λ,w ∈N (u)} | [41], which is then

used as our ground truth to evaluate the solution quality
2
. Each

instance is composed of the graphG , past coverage x, node features
ξ , the attacker behavior q∗, and the sampled paths Λ (only used in

two-stage method).

8.1.3 Training, validating, and testing: we generate 50 instances
(G, q∗, x∗, ξ ) as our entire dataset, which are randomly separated

into training, validating, testing set with size 35, 5, 10. The model is

trained on the training set for 100 epochs, where the best model is

chosen from the 100 epochs with the highest score in the validation

set. In the following experiments, to achieve statistical significance,

for every method and different setup, we ran 50 independent trials

and recorded the average results on the testing set.

8.2 Solution Quality
In this section, we compare the solution quality of all methods

on stochastic block models and geometric graphs. We generate a

set of random graphs with features as described in Section 8.1.1,

where Gaussian noise with std. of 0.2 is added to the features to

model noisy real-world data. We set b = 2. As our goal is efficient

approaches for adversary models in large-scale NSGs, the focus

of this paper is then on experimenting with many different set-

tings (graph sizes and types), techniques (different variations of

game-focused learning), noise, and other variables in building an

adversary model. In addition, since we care more about how much

defender utility that various learning approaches can improve, we

focus on the counterfactual regret, which is defined as the gap be-

tween the defender utility of our solution and the true optimum

1
For stochastic block model, we separate nodes into communities with 10 nodes

in each community, then connect nodes within the same community with probability

0.4 and nodes not in the same community with probability 0.1. For geometric graph,

we randomly places nodes in a unit square and connects nodes with distance smaller

than 0.2.
2
The reason of using sampled paths instead of the actual generated attractiveness

values as our ground truth is to align with the real-world data, where it is almost

impossible to have access to the underlying attacker preference or Markovian behavior;

instead, we generally have access to the paths or edges where illegal activities have

been found, which can be used as sampled paths or edges and used to reconstruct the

Markovian behavior as we did here.

when the ground truth is given in advance. Smaller regret implies

that the solution is closer to the actual optimum.

In Figure 3(a) and 3(b), we can see that our regularized block

game-focused method outperforms two-stage method (note that all

of the improvements in the average regret reported by the reg-block-

GF method over the two-stage method are statistically significant

with p < 0.05). When the instance gets larger, the difference be-

tween two approaches also gets larger, showcasing the limit of

the standard two-stage behavior learning approach. In Figure 4(a)

and 4(b), we compare the solution quality of different game-focused

methods. Due to the computational issue, the naive game-focused

method can only scale up to graphs with 40 nodes. The block game-

focused method can scale up to larger instances but it sacrifices

some solution quality compared to the naive game-focused ap-

proach. Finally, the regularized block game-focused method can

achieve both scalability and solution quality by using the block

update and regularization term.

8.3 The Impact of Noise
Figure 5(a) and 5(b) compare the performances under different level

of noise, where a noise with std. of r is added to the normalized

features. We can see that the more noise implies larger regret and

poorer performance. But we can also notice that the gap between

regularized block game-focused method and the two-stage method

gets larger when more noise is introduced. This is probably due to

the mismatch between the low intermediate loss and the good final

solution quality when the feature is noisy. This also explains why

regularized block game-focused method can outperform two-stage

in Figure 3 when the features are noisy.

8.4 Scalability
Figure 6(a) and 6(b) show the scalability of all game-focused meth-

ods. We limit the training time to be up to 48 hours. Any programs

last more than that were cut and the corresponding results were

recorded. Naive game-focused method can only handle graphs with

up to 40 nodes and it scales extremely poorly. Our proposed meth-

ods, block game-focused and regularized block game-focused with

a block size #nodes/2, can scale to much larger instances.

8.5 Block Size Selection
To study the effect of block size, we select various block sizes pro-

portional to the total number of variables and run the block game-

focused learning and regularized block game-focused methods to

compare the convergence. In Figure 7(a), we can see that for the

block-game-focused method, the convergence and the final perfor-

mance are better when the block size is larger. Figure 7(b) shows

the convergence of regularized block game-focused method with

different block sizes. In this case, a larger block size still helps, but

the difference is relatively tiny.

Figure 7(c) shows the running time of the forward (lines 4-5) and

backward path (lines 6-9 in Algorithm 2) for the block game-focused

method with various block sizes, where forward path solves pre-

scriptive stage with black-box optimization and the backward path

requires computing the Hessian and solving the quadratic program

to back-propagate. In practice, we would like to select a block size

such that the running time of forward and backward paths are of



(a) Stochastic block model (b) Geometric graphs

Figure 3: Solution quality comparison between two-stage and
regularized block game-focused method. The difference in so-
lution quality gets larger when the graph size increases.

(a) Stochastic block model (b) Geometric graphs

Figure 4: Solution quality comparison between game-focused
methods. Randomized block update can improve scalability
while the regularization can improve the solution quality.

(a) Stochastic block model (b) Geometric graphs

Figure 5: The figures show the effect of noise to all the meth-
ods, where regularized block game-focused method is more
resilient to noise in the features.

(a) Stochastic block model (b) Geometric graphs

Figure 6: Naive game-focused method can only scale up to
40 nodes. Instead, block game-focused and regularized block
game-focused can solve larger instances with 80 nodes.

(a) Block game-focused method (b) Regularized block game-focused (c) Running time (d) Block selection

Figure 7: Figure (a) and (b) show the convergence rate of different block sizes. Figure (c) shows the running time of backward
path for different block sizes, which grows significantly more than linear. Figure (d) shows the effect of different block sam-
pling methods. All methods converge with slightly different speed, where coverage-based sampling is the best and it is also
what we use in other experiments.

the same order to balance between the convergence and scalability,

which explains the reason that we eventually choose block size

= #nodes/2 for all other experiments. Lastly, Figure 7(d) compares

different block selections mentioned in Section 7.2, where conver-

gence speed differs but mostly lead to the same point. Coverage-

based selection converges the most quickly, and thus we use it

throughout the other experiments.

9 CONCLUSIONS
In this paper, we introduce a fundamentally different behavior learn-

ing approach, game-focused learning, to network security games,

placing the downstream defender utility maximization problem

into the loop of behavior learning. We propose a novel local SUQR

model as our adversary model, where GCNs can be applied to

automatically handle the information propagation in the graph.

We further identify two existing issues of game-focused learning

method: scalability and non-convexity, which are addressed by our

block game-focused and by regularizing respectively. Block game-

focused method can largely reduce the computational cost while

maintaining the focus on the final solution quality as naive game-

focused learning does. We also provide theoretical guarantees on

the block game-focused method. In the experimental section, we

run extensive experiments to verify the reduction on the training

time and show an improvement in terms of solution quality. The

block game-focused method reduces the training time, but sacrifices

a little solution quality, while regularized block game-focused can

achieve both speed and performance.
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10 COMPUTATION OF DEFENDER UTILITY
Given coverage x, if we sort the vertices out by intermediate states

then absorbing states, then the transition matrix induced by behav-

ior q(x, ξ ) can be written as: P =

[
Q R
0 I

]
, where I is an identity

matrix representing once the attacker reaches any absorbing states,

he would never transit to other states. Q,R are both functions of x
and ξ .

The absorbing probability can be computed by B = (I −Q)−1R ∈

R |S |×( |T |+1)
, where the entry Bi j indicates the probability that the

attacker initiates from state i and ends up being in absorbing state

j. Since we also know the distribution π ∈ R |S | that the attacker

will appear and the defender utility U d ∈ R |T |+1
including the

reward of catching the attacker, the defender utility can be given by

π⊤BU d
, where the function f is defined by the negative defender

utility:

f (x, q) = −π⊤BU d = −π⊤(I −Q(x, q))−1R(x, q)U d
(14)

which is still a function of x and q. We can also compute the deriva-

tives of this function f . But since the computation of f involves

matrix inversion, the computation of derivatives will also involve

matrix inversions and multiplications, which can be very expensive

especially for higher order derivatives.

11 THE CHOICES OF LOSS FUNCTION
Given two transition matricesM,M ′ ∈ R |V |× |V |

, we can align with

the any standard definition of matrix norm:

L(M,M ′) =


M −M ′




(15)

Another choice of loss function definition is to compute the

KL-divergence or cross entropy of the path distribution inferred

by these two transition matrices. Since there are absorbing states,

the path can eventually terminate when it reaches to any of the

absorbing state. However, there could be loop in the graph, which

might incur infinitely many possible paths, making the path distri-

bution infinitely dimensional. Another issue is that we do not have

a close form of the path distribution, which can prevent us from

computing the KL-divergence between two implicit distributions.

In our domain, we usually have samples from the ground truth

Markov chain, which can be used as an empirical path distribution.

By considering those samples as the empirical distribution Λ, we can
compute the KL-divergence between Λ and the predicted Markov

chainM :

L(Λ,M) =
∑

α
prob(α ∈ Λ) log

prob(α ∈ Λ)

prob(α ∈ M)
(16)

which can be efficiently computed since Λ is finite and all the prob-

ability can be analytically computed. This serves as an alternative

for us to compute the KL-divergence between the ground truth and

our prediction.

12 DIFFERENTIABLE QUADRATIC
PROGRAM (AMOS ET AL. [4])

Given a quadratic program:

min

x

1

2

xTQx + pT x (17)

s.t. Gx ≤ h

Ax = b

According to [4, 8], we can compute the derivative of the optimal so-

lution x∗ with respect to each parameters in the quadratic program,

e.g., Q,p,G,h,A,b. In our case, we only consider the derivative

with respect to p, where G,h,A,b are constants and we ignore the

derivative of the Hessian Q since its derivative is of third order.

After solving the quadratic program, we can get the solution x∗

with dual variables λ∗,ν∗ respectively for the inequality constraints
and equality constraints. All the variables x∗, λ∗,ν∗ are all functions
of prediction q. In [4, 8], they proposed that if we write the KKT

conditions:

Qx∗ + p +A⊤ν∗ +G⊤λ∗ = 0

Ax∗ − b = 0

D(λ∗)(Gx∗ − h) = 0

where D(λ∗) is the diagonal matrix with λ∗ on the diagonal. We can

consider the total derivative of the above equations, which yields:

dQx∗ +Qdx∗ + dp + dA⊤ν∗ +A⊤dν∗ + dG⊤λ∗ +G⊤dλ∗ = 0

dAx∗ +Adx∗ − db = 0

D(Gx∗ − h)dλ∗ + D(λ∗)(dGx∗ +Gdx∗ − dh) = 0

Since here we assumeQ,G,h,A,b are all constants, so we can ignore
the derivatives of there terms and get:

Qdx∗ + dp +A⊤dν∗ +G⊤dλ∗ = 0

Adx∗ = 0

D(Gx∗ − h)dλ∗ + D(λ∗)Gdx∗ = 0

which can be further turned into matrix form:
Q G⊤ A⊤

D(λ∗)G D(Gx∗ − h) 0

A 0 0



dx∗

dλ∗

dν∗

 =

−dp
0

0


⇔


Q G⊤ A⊤

D(λ∗)G D(Gx∗ − h) 0

A 0 0



dx∗
dp
dλ∗
dp
dν ∗

dp

 =

−I
0

0

 (18)

⇔


dx∗
dp
dλ∗
dp
dν ∗

dp

 =


Q G⊤ A⊤

D(λ∗)G D(Gx∗ − h) 0

A 0 0


−1 

−I
0

0


This allows us to compute the gradients

dx∗
dp by solving the corre-

sponging linear equation.



We can also combine the chain rule
df
dp =

df
dx∗

dx∗
dp by:

d f

dp
=


dx∗
dp
dλ∗
dp
dν ∗

dp


⊤ 

df
dx∗
0

0

 =

−I
0

0


⊤ 

Q D(λ∗)G⊤ A⊤

G D(Gx∗ − h) 0

A 0 0


−1 

df
dx∗
0

0


Or equivalently, define

dx
dλ
dν

 =

Q D(λ∗)G⊤ A⊤

G D(Gx∗ − h) 0

A 0 0


−1 

−
df
dx∗
0

0

 (19)

then
df
dp = dx, which is the derivative of the objective function f

with respect to the linear coefficient p of the quadratic program.

13 PROOF OF THEOREM 7.1
Theorem 7.1. When the intermediate predictionmatches the ground

truth, i.e., q(·, ·;θ∗) = q∗, we have df (x∗,q∗)
dθ |θ=θ ∗ = 0 for both Algo-

rithm 1 and Algorithm 2 with any block C .

Proof. We first prove for the Algorithm 1 case. Our goal is to

prove that this
df
dp |q=q∗ = dx is exactly 0 at q∗, meaning there is no

gradient at the true optimal prediction q∗.
To prove this, we directly show that dx = 0,dλ = 1{λ∗,0},dν =

ν∗ is a solution. When the KKT matrix in Equation 18 is non-

singular, this implies that dx = 0 is the unique solution. When

the KKT matrix is singular, dx = 0 is a subgradient. Furthermore, if

we follow the implementation in [8], they remove the dependent

rows of the KKT matrix 18 such that the matrix is non-singular,

which again implies that dx = 0 is the unique solution. To verify

this, we can compute:
Q G⊤D(λ∗) A⊤

G D(Gx∗ − h) 0

A 0 0




0

1{λ∗,0}
ν∗


=


G⊤D(λ∗)1{λ∗,0} +A⊤ν∗

D(Gx∗ − h)1{λ∗,0}
0

 =

G⊤λ∗ +A⊤ν∗

0

0


Notice that the KKT condition of the quadratic program implies:

Qx∗ + p +A⊤ν∗ +G⊤λ∗ = 0

⇔ Qx∗ +
∂ f

∂x
|x=x∗,q=q∗ −Qx∗ +A⊤ν∗ +G⊤λ∗ = 0

⇔
∂ f

∂x
|x=x∗,q=q∗ +A

⊤ν∗ +G⊤λ∗ = 0


Q G⊤D(λ∗) A⊤

G D(Gx∗ − h) 0

A 0 0




0

1{λ∗,0}
ν∗


=


G⊤λ∗ +A⊤ν∗

0

0

 =

−

df
dx∗
0

0


This verifies that dx = 0,dλ = 1{λ∗,0},dν = ν∗ is a solution of

Equation 19. This concludes the proof of Algorithm 1.

To prove for Algorithm 2, we consider the following equation:


dxC
dλ
dν

 =

QC D(λ∗)G⊤

C A⊤
C

GC D(GCx∗C − hC ) 0

AC 0 0


−1 

−
df
dx∗C
0

0

 (20)

where G =
[
GC GC

]
,A =

[
AC AC

]
that GC ,AC correspond

to the coefficients of indices C . hC = h −GCx
∗

C
corresponds to the

modified linear inequalities without the effect of terms xC .

We can also verify that
df
dpC

|q=q∗ = dxC = 0 is a solution in

Equation 20. By setting dxC = 0,dλ = 1{λ∗,0},dν = ν∗, we can
find that this also satisfies the Equation 20.

All of these imply that
df
dpC

|q=q∗ = 0 (or at least a feasible sub-

derivative). By applying Equation 9 of Algorithm 1 or Equation 11 of

Algorithm 2, we can get
df (x∗,q∗)

dθ |θ=θ ∗ = 0 where θ∗ is the optimal

model parameter that gives the correct prediction q∗. □

14 PROOF OF THEOREM 7.2
Theorem 7.2. The quadratic programs in Algorithm 1 and Algo-

rithm 2 share the same primal solutions on the blockC . They also share
the same dual solution on the non-degenerate constraints containing
at least one variable in the block.

Proof. Since both algorithms are derived from Taylor expansion

around a local optimum, the Hessian is always positive definite.

Therefore, the solution given by the quadratic program is exactly the

same as the local optimum previously computed, which is shared for

both algorithms. So both of them share the same primal solutions

at indices C .
For the dual solutions, we can write down the quadratic pro-

grams 17 for Algorithm 1 by:

minx
1

2

x⊤Qx + p⊤x (21)

s.t. Gx ≤ h

Ax = b

with Q =
∂2f
∂x2 |x=x

∗ ,p =
∂f
∂x |x=x∗ −Qx∗. The KKT stationary condi-

tion can be given by:

Qx∗ + p +G⊤λ∗ +A⊤ν∗ = 0

⇔ Qx∗ +
∂ f

∂x
|x=x∗ −Qx∗ +G⊤λ∗ +A⊤ν∗ = 0

⇔
∂ f

∂x
|x=x∗ +G

⊤λ∗ +A⊤ν∗ = 0 (22)

Similarly for Algorithm 2 in the case there is no degenerative

constraint, we have:

minxC
1

2

x⊤CQCCxC + p⊤CxC (23)

s.t. GCxC ≤ hC = h −GCxC
ACxC = bC = b −ACxC

whereQCC =
∂2f
∂x2C

|x=x∗ ,pC =
∂f
∂xC

|x=x∗ −QCCx∗C , and constraints

G =
[
GC GC

]
,A =

[
AC AC

]
. The KKT stationary condition



can be given by:

QCCx∗C + pC +G
⊤
Cλ

∗ +A⊤
Cν

∗ = 0

⇔ QCCx∗C +
∂ f

∂xC
|x=x∗ −QCCx∗C +G

⊤
Cλ

∗ +A⊤
Cν

∗ = 0

⇔
∂ f

∂xC
|x=x∗ +G

⊤
Cλ

∗ +A⊤
Cν

∗ = 0 (24)

Comparing Equation 22 and Equation 24, we can find that Equa-

tion 24 is just a subset of Equation 22, or more specifically the equa-

tions at indices C . Similarly, they also share the same primal, dual

feasibility conditions, and complementary slackness conditions.

Therefore, the dual solutions of the KKT conditions of quadratic

program 21 is also a solution of the KKT conditions of 23.

When there are degenerative constraints, for example, some

rows R of the constraintsGC are degenerative and thus be all 0 after

truncating by blockC , i.e.,GR,C = 0. In this case,G⊤
Cλ

∗ = G⊤
R,Cλ

∗
R+

G⊤

R,C
λ∗
R
= G⊤

R,Cλ
∗
R , where there is no constraint posted on λ∗

R
,

which can be arbitrary here. Similarly, some rows L of equality

constraints AC might also be degenerative, i.e., AL,C = 0. But if we

only consider the non-degenerative constraintsGR,C and AL,C , we

can re-write the KKT stationary conditions in Equation 24 by:

∂ f

∂xC
|x=x∗ +G

⊤
Cλ

∗ +A⊤
Cν

∗ = 0

⇔
∂ f

∂xC
|x=x∗ +G

⊤
R,Cλ

∗ +A⊤
L,Cν

∗ = 0 (25)

In this case, the entire KKT condition with non-degenerative dual

variables is non-singular, which imposes a unique solution to the

dual variables. But we have shown that the dual solution of Equa-

tion 22 is also a solution to Equation 24, which is again a solu-

tion to Equation 25. By uniqueness, this solution of Equation 25is

also a solution of Equation 24 on the non-degenerative constraints

GR,C ,AL,C , thus a solution to the Equation 22, which concludes

the proof. □

15 PROOF OF THEOREM 7.3
Theorem 7.3. Given the primal solution x∗ and the dual solution

λ∗ of the quadratic program in Algorithm 1 with linear constraints

G,h,A,b, the Hessian Q =
∂2f
∂x , linear coefficient p = ∂f

∂x , and the

sampled indices C ⊂ {1, 2, ..., |E |}, the gradient
dx∗C
dpC

∈ R |C |× |C |

computed in Algorithm 2 is an approximation to the block compo-
nent of the gradient dx

∗

dp ∈ R |E |× |E | computed in Algorithm 1. More
specifically,



(dx∗dp

)
CC

−
dx∗C
dpC





 ≤ ∆ + ∆C
µmin(Q)

max(λ∗, 1)


K−1

CC


 



(dx∗dp

)
CC






(12)

where ∆ =


G⊤G +A⊤A



 ,∆C = 


Q⊤

CC
QCC




, and µmin(Q) is the
smallest eigenvalue of positive definite matrix Q . KCC is the KTT
matrix given by the quadratic program in Algorithm 2.

Proof. DenoteK =


Q G⊤ A⊤

D(λ∗)G D(Gx∗ − h) 0

A 0 0

 to be the KKT
matrix 18 of the quadratic program 21 given by Algorithm 1. We

can also denote KCC =


QCC G⊤

C A⊤
C

D(λ∗)GC D(GCx∗C − hC ) 0

AC 0 0

 to be

the KKT matrix of the quadratic program 23 given by Algorithm 2.

Notice that KCC is in fact a block of K since they share the same

primal and dual solution. According to Equation 18, we can write

down the gradient
dx∗
dp and

dx∗C
dpC

respectively in Algorithm 1 and

Algorithm 2 by:

dx∗

dp
=


I
0

0


⊤

K−1


−I
0

0

 ,
dx∗C
dpC

=


I
0

0


⊤

K−1
CC


−I
0

0


If we use block form to represent the KKT matrix K , we can get:

K =

[
K1 K2

K3 K4

]
where we can apply the block matrix inversion technique and get:

K−1

=

[
K−1
1
+ K−1

1
K2(K4 − K3K

−1
1
K2)

−1K3K
−1
1

−K−1
1
K2(K4 − K3K

−1
1
K2)

−1

−(K4 − K3K
−1
1
K2)

−1K3K
−1
1

(K4 − K3K
−1
1
K2)

−1

]
(26)

where K1 needs to be invertible here.

SetK1 = QCC ,K2 =
[
QCC G⊤

C
A⊤

C

]
,K3 =


QCC

D(λ∗)GC
AC

 ,K4 =

KCC , where K1 = QCC is positive definite therefore also invertible.

We can see that K1 ∈ R |C |× |C |
and the sizes of K2,K3,K4 depend

on the size of the block C and the size of the constraints GC ,AC ,
which can probably help visualize the size of the block matrix.

If we truncate the gradient
dx∗
dp to its C block, it is equivalent to

remove the C part from K−1
, which gives us:(

dx∗

dp

)
CC
=


I
0

0


⊤ (

K−1
)
CC


−I
0

0

 =

I
0

0


⊤

(K4 − K3K
−1
1
K2)

−1


−I
0

0


Therefore, the difference between (dx

∗

dp )CC and

dx∗C
dpC

can be bounded

by:(
dx∗

dp

)
CC

−
dx∗C
dpC

=


I
0

0


⊤

(K4 − K3K
−1
1
K2)

−1


−I
0

0

 −

I
0

0


⊤

K−1
CC


−I
0

0


=


I
0

0


⊤

((K4 − K3K
−1
1
K2)

−1 − K−1
CC )


−I
0

0


=


I
0

0


⊤

(K4 − K3K
−1
1
K2)

−1(I − (K4 − K3K
−1
1
K2)K

−1
CC )


−I
0

0


=


I
0

0


⊤

(K4 − K3K
−1
1
K2)

−1(K3K
−1
1
K2K

−1
CC )


−I
0

0

 (27)

where the last equality comes from the choice K4 = KCC , thus the
identity matrix is canceled out. We can then bound the matrix norm



of K3K
−1
1
K2K

−1
CC by:

K3K
−1
1
K2K

−1
CC



 ≤ ∥K3K2∥




Q−1

CC




 

K−1
CC




≤

max(λ∗, 1)


K⊤

2
K2




µmin(QCC )



K−1
CC




≤

∆ + ∆C
µmin(QCC )

max(λ∗, 1)


K−1

CC




≤
∆ + ∆C
µmin(Q)

max(λ∗, 1)


K−1

CC




(28)

where the second inequality is from the fact that K3 is a matrix

multiplication of K⊤
2
and a diagonal matrix with 1 and λ∗ on the

diagonal. The matrix norm can be bounded by the matrix norm

of the diagonal matrix, thus max(λ∗, 1), and the remaining ma-

trix multiplication K⊤
2
K2. The third inequality is due to the sin-

gular value



K⊤
2
K2



 = 

K2K
⊤
2



 = 


QCCQCC +G
⊤

C
GC +A

⊤

C
AC




 ≤


QCCQCC +G
⊤G +A⊤A




 ≤ ∆ + ∆C , where the middle inequality

is due to the fact that all these individual terms are positive semi-

definite, so adding new postive semi-definite terms such that they

become G⊤G,A⊤A only increases the norm value.

Taking matrix norm to Inequality 27 and using Inequality 28 to

substitute



K3K
−1
1
K2K

−1
CC




, we can get:



(dx∗dp

)
CC

−
dx∗C
dpC






≤

∆ + ∆C
µmin(Q)



K−1
CC



 







I
0

0

 (K4 − K3K
−1
1
K2)

−1


−I
0

0










=
∆ + ∆C
µmin(Q)



K−1
CC



 



(dx∗dp

)
CC





 (29)

which concludes the proof. □

15.1 Discussion of Singularity of KKT Matrix
One biggest concern is whether the KKT matrices K and KCC are

singular. If the chosen KCC is singular, then the bound provided in

Theorem 7.3 becomes useless.

As discussed in the appendix of [8], in Equation 18, due to KKT

condition, at least one of λ∗i and (Gx∗ − h)i is 0. Also as they dis-

cussed, when both of them are 0, the whole i-th row in D(λ∗)G and

Gx∗−h is all 0. We can either impose new constraint or just remove

the row to make the matrix non-singular.

If λ∗i = 0 with (Gx∗ − h)i > 0, then in the i-th row, there is

only the term (Gx∗ − h)i being nonzero. Thus we can solve the

equation in the i-th row by setting (dλ
∗

dp )i = 0 and remove the row

and the variable (dλ
∗

dp )i from the linear equation. Therefore, the

linear equation and the matrix can be simplified by:
Q G⊤

I A⊤

D(λ∗I )GI D(Gx∗ − h)I 0

A 0 0



dx∗
dp
dλ∗I
dp
dν ∗

dp

 =

−I
0

0



where I = {i : λ∗i , 0}. But notice that (Gx∗ − h)i = 0 due to the

KKT conditions and the assumption of I . So we can simply write:


Q G⊤

I A⊤

D(λ∗I )GI 0 0

A 0 0



dx∗
dp
dλ∗I
dp
dν ∗

dp

 =

−I
0

0

 (30)

Notice that we can assume

[
D(λ∗)GI

AI

]
to have a full row rank now.

Equivalently, we can also assume

[
G⊤
I A⊤

I
]
to have a full column

rank.

15.2 Singularity of Block KKT Matrix
Given a simplified version of the non-singular full KKT matrix in

Equation 30, we can write down the block KKT matrix as:


QCC G⊤

I,C A⊤
C

D(λ∗I )GI,C 0 0

AC 0 0



dx∗C
dpC
dλ∗I
dpC
dν ∗

dpC

 =

−I
0

0

 (31)

where GI =
[
GI,C GI,C

]
,AI =

[
AI,C AI,C

]
. In order to make

the block KKT matrix non-singular, we need to select C such that[
GC
AC

]
remains full row rank. In this case, the block KKT matrix will

remain non-singular and thus invertible.

In practice, we cannot access to the dual varialbe λ∗ before solv-
ing the QP and choosing the blockC . But we can compute the slack

variables Gxopt − h since xopt is given. We need to make sure to

makeGI,C nonzero for I = {i : λ∗i , 0} ⊂ {i : (Gxopt − h)i = 0}, or

equivalently the indices of tight constraints.

Some choices of block C might make Equation 31 singular but

still solvable. That is due to some dependent rows in

[
GI,C
AC

]
, which

admit to each others since the right hand side is all 0. This allows

us to remove the redundant constraints and re-solve the linear

equation by applying matrix inversion. But in this case, the block

KKT matrix will not contain all the constraints, which leaves some

constraints out of the block. Algorithm 2 still works but the K1

in the proof of Theorem 7.3 is not just QCC but contains some

additional terms from constraints excluded by the block quadratic

program. The bound will also vary since we need to estimate the

eigenvalue of K1, which depends on the added constraints and does

not have a simple form here.
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