
Experiential Preference Elicitation for Autonomous Heating and
Cooling Systems

Andrew Perrault
∗

University of Southern California

Los Angeles, California

Craig Boutilier

Google

Mountain View, California

ABSTRACT
AI systems that act on behalf of users require knowledge of user

preferences, which can be acquired by preference elicitation. In
many settings, users can respond more easily and accurately to

preference queries reflecting their current, or recently experienced,
context (e.g., state of the environment), than to those reflecting

contexts further removed. We develop and study a formal model

of experiential elicitation (EE) in which query costs and response

noise are state-dependent. EE settings tightly couple the problems

of control and elicitation. We provide some analysis of this abstract

model, and illustrate its applicability in household heating/cooling

management. We propose the use of relative value queries, asking
the user to compare the immediate utility of two states, whose

difficulty is related to the degree and recency of a user’s experience

with those states. We develop a Gaussian process-based approach

for modeling user preferences in dynamic EE domains and show

that it accrues higher reward than several natural baselines.

KEYWORDS
Single and multi-agent planning and scheduling; Multi-user/multi-

virtual-agent interaction

ACM Reference Format:
Andrew Perrault and Craig Boutilier. 2019. Experiential Preference Elici-

tation for Autonomous Heating and Cooling Systems. In Proc. of the 18th
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), Montreal, Canada, May 13–17, 2019, IFAAMAS, 9 pages.

1 INTRODUCTION
AI systems or agents that interact with users generally require in-

formation about user preferences to act effectively on their behalf.

Such preferences can be obtained in a variety of ways, which we di-

vide into two broad categories. The first is using revealed preference
data, in which a user’s past decisions in the target (or a related)

setting provide a (partial) view of their utility function [2, 19, 28].

The second is through preference elicitation (PE), i.e., directly asking
the user about their preferences for possible decisions or outcomes,

using queries of various types [4, 6, 8]. Each approach (or some

combination) may be better-suited to particular settings. Revealed

preference is ineffective when costs of acquiring user data are pro-

hibitive (e.g., due to privacy rules, or scarcity) or when relevant data

accrues slowly or not at all. Revealed preference may also fail when

the introduction of a user-representing agent changes the user’s

∗
This research was performed while the author was at University of Toronto.

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

preferences. For example, if electricity prices drop at night while a

user sleeps, she may be unable to exploit the decrease without an

agent. PE avoids this by querying the user in advance about how

she would act in hypothetical situations.

PE has its own limitations. Asking a user to introspect and ana-

lyze her preferences for specific outcomes—usually at some remove

from the scenario where the data will be used—incurs cognitive costs
and risks inaccurate responses. For instance, an apartment selection

agent may ask a user to compare two “hypothetical” apartments

without the user being able to view them [6]. In reality, however,

people rely heavily on “experiential” information when making real

estate decisions. Prospective home buyers visit an average of 10

homes over 5 months and 80% of prospective buyers know whether

a home is right for them as soon as they step inside [21]. Their

reliance on “experiential” information to make decisions can be

explained by dual process theory [16], which includes a primarily

subconscious system used to make decisions on issues with which

one has extensive experience. For example, we can quickly evaluate

the comfort of a prospective living space by visiting it in person.

Performing the same evaluation from a description is a difficult,

unfamiliar task.

In this work, we develop a model of elicitation in sequential
decision-making settings with relevant experiential information,

where the cost and accuracy of a user’s response to a preference

query depend on the state of the system. Specifically, if a user is

asked to assess (e.g., compare) outcomes, both cost and response

noise decrease with how “closely” the user has experienced these

outcomes, allowing different forms of distance (e.g., state similarity,

recency of experience) to play a role. We dub this approach experien-
tial elicitation (EE), following Hui and Boutilier [14]. The EE setting

introduces new challenges: because query cost and noise depend

on the current state, an agent’s policies for both system control and

elicitation are tightly coupled. Indeed, there is an explicit trade-off

between exploitation (optimal control given the current preference

information) and exploration (having the user encounter new cir-

cumstances that may allow preference queries that can improve

control).

We motivate our methods by considering a smart home agent

that controls the heating, ventilation and cooling (HVAC) system,

changing settings in response to variable electricity prices and a

user’s complex temperature preferences. The increasing presence of

renewable sources of power generation has created highly variable

pricing, and users cannot realistically adapt their behavior to price

variations in real time (due to attentional costs, inability to forecast

price and temperature changes, etc.). For an autonomous agent to

adapt HVAC on a user’s behalf, considerable preference information

about small changes in comfort levels is needed. PE queries can be

difficult to answer unless a user is actually experiencing (or has

recently experienced) the conditions in question (e.g., temperature,

humidity, price). As such, this a natural domain for EE.

The main contributions of this paper are as follows:

(1) We introduce and motivate the EE approach for a variety of

AI systems that interact with users over time.

(2) We provide a theoretical analysis connecting optimal EE to

other well-known problems in AI.

(3) We study the interplay (and synergies) of relative value
queries (RVQs), which are natural in HVAC settings, with

a preference prediction model based on Gaussian processes
(GPs).

(4) We develop a system for EE in a smart-home HVAC set-

ting using RVQs and GPs, and analyze it empirically using

a combination of real and synthetic data, showing that it

outperforms natural baselines.

The paper is organized as follows. We review Markov decision

processes, GPs, and related work in PE. Then we provide a formal

model of EE and relate it to other problems in AI. We introduce

RVQs and our GP-based model for EE. Next we outline a natural

cost and noise model for RVQs, and we conclude with experimental

results.

2 BACKGROUND
Markov Decision Processes (MDPs): Our elicitation methods

are engaged by an agent acting in a stochastic control environment

modeled as an MDP [23]. The problem of HVAC control naturally

lends itself to being solved as an MDP. At each time step, the agent

inputs a control action, heating or cooling the house. The interior

temperature in the next time step depends on the interior and

exterior temperatures in the previous step and the action that was

taken. We assume a fully observable MDPM = {S,A, {Psa },γ , β , r }
with finite state set S , action set A, transition models Psa , discount
factor γ , initial state distribution β and reward function r (s,a).
We consider infinite-horizon models. A (deterministic) policy, i.e.,
a mapping from each state to an action, π : S → A has value
V π

, given by:V π =
∑
s1∈S β (s1)E

[∑∞
i=1

γ i−1r (si ,π (si)) |π
]
, where

expectation is taken over the distribution of state sequences induced

by π . An optimal policy π∗ maximizes expected value, with π∗ ∈
argmaxπ V π

, and can be computed by a variety of means [23].

Preference Elicitation (PE): PE refers to the process by which

an agent, when making a decision on behalf of a user, learns the

user’s preferences for outcomes of that decision by querying the

user [9, 29]. In this work, we assume that the agent starts with

some prior distribution over the user’s utility, from which the true

utility function is drawn. To gain knowledge of the user’s utility,

the agent queries the user, who responds (perhaps with some noise)

in a fashion that depends on her utility. The type of queries allowed

is a modeling choice that depends on the user’s capabilities and the

structure of the problem. The cognitive and communication costs of

queries also play a role in PE; otherwise an agent could potentially

ask the user to reveal her entire utility function. After asking some

number of queries, the agent makes a decision and is “rewarded”

with the expected value of that decision w.r.t. to its posterior beliefs

about the true utility function given query responses received. We

provide a formal description of PE (including query types and

strategies) when we describe experiential elicitation below.

Gaussian Processes (GPs): GPs [24] are universal function ap-

proximators that model the points of a function as a multivariate

Gaussian distributed with known covariance given by applying

the kernel function to their inputs. In addition to estimating the

function value at any point, GPs quantify the uncertainty in that

estimate. GPs have been used previously in PE because they ad-

dress several of the main desiderata of preference models: a) they

can capture any utility function; b) they model uncertainty in a

principled manner; c) they facilitate query selection to improve the

user’s objective; and d) they allow for the incorporation of prior

knowledge [3]. A GP is represented as {k,xtrain,ytrain,σ
2} with

kernel function k (·, ·), training data (xtrain,ytrain) and Gaussian

observation noise σ 2
.
1
Typical kernel functions include the squared

exponential exp[
(x0−x1)

2

2ℓ2
], where the lengthscale parameter ℓ gov-

erns the distance over which observations have a “significant” effect

on estimates.

Calculating a GP’s predicted mean µtest and covariance
¯Σ at any

number of test points xtest can be done by applying the standard

conditional expectation and covariance expressions for multivariate

Gaussians and using the fact that the sum of Gaussians is Gaussian

(for observation noise). Let K denote the covariance matrix that

results from stacking the test points and the training points:

K =

[
Ktest, test Ktest, train

Ktrain, test Ktrain, train

]
(1)

where Ki, j = k (xi ,x j). Then,

µtest =Ktest, train (Ktrain, train + σ 2I)−1ytrain (2)

¯Σ = − Ktest, train (Ktrain, train + σ 2I)−1Ktrain, test+

Ktest, test + σ 2I . (3)

Matrix inversions make both operations (2, 3) scale cubically with

the number of training points. Since our work aims to minimize

this number (i.e., user queries asked), this is not a practical obstacle.

Since test points correspond to states of the MDP, performance of

the conditional expectation operation is more critical—it is linear

in data set size.

While we present GPs with uniform observation noise, we make

use of the fact that the matrix σ 2I can be swapped with an arbitrary

covariance matrix, e.g., to allow for non-identically distributed

Gaussian noise.

RelatedWork: Regan and Boutilier [25, 26], in their work on PE in

MDPs, assume that elicitation and control are separable. They query

the user until enough reward information has been acquired to solve

the MDP (approximately) optimally. In our work, the ability of the

user to effectively assess reward depends on the current system

state, inducing a tight coupling between elicitation and control.

PE in sequential decision making has also been studied from the

perspective of “active” inverse reinforcement learning [15, 20], but

without an experiential component.

Shann and Seuken [30, 31] study PE and optimal control in an

MDP-based HVAC model. Their work differs from ours in three

main ways. First, the cost and accuracy of their queries are not mod-

eled to allow context dependence. Second, they assume a highly

1
We assume a prior mean of zero for simplicity and w.l.o.g.

restrictive query structure: the user is queried once per day regard-

less of whether the query is valuable to the algorithm or not, and

it is impossible to query about any context except the current one,

i.e., the model can’t learn about the user’s utility function when she

can’t be queried directly (e.g., is asleep). Third, they assume user

utility has a specific functional form, whereas we allow learning of

arbitrary utility functions, a harder task.

Truong et al. [34] and Le et al. [17] study PE in the context of

scheduling. Both works aim to maximize user utility and minimize

query cost. The key difference between their approaches and ours is

their models are not “experiential:” the cost of a query depends only

on the query and the query history. Neither the cost nor accuracy

of a query response depends on the current state or state history.
GPs were first used for preference learning by Chu and Ghahra-

mani [10], who study the problem of learning to rank a set of al-

ternatives given the results of pairwise preference queries without

elicitation. Bonilla et al. [3] extend this model to support multi-user

collaborative filtering, and perform elicitation using expected value

of information estimates of each query, though they do not consider

experiential information.

PE with a GP-based uncertainty model resembles GP-based ap-

proaches to Bayesian optimization [18, 33]. The key difference is

the experiential component of our approach. In addition, queries

have costs in our model (we maximize the payoff minus the query

cost, rather than minimizing the number of queries to reach some

target solution quality), and the function we maximize at each stage

differs due to its dependence on the current state.

3 A MODEL OF EXPERIENTIAL ELICITATION
In this section, we describe an abstract model for experiential elic-
itation (EE) and draw theoretical connections to other sequential

decision models.

An EE problem instance is {M,R,Q,N = {Nq },D = {Dq },C},
whereM is a fully observable MDP. Unlike a standard MDP, the

true reward function r is not (initially) known to the agent. R is the

reward uncertainty model capturing the agent’s prior over possible

rewards. We take a probabilistic perspective—R is a distribution

over reward functions [35]. We sometimes abuse notation and use R
to refer to the support of the distribution (i.e., set of feasible reward

functions). The remaining parameters specify the process available

to the agent to elicit user’s reward function.Q is the set of available

queries that can be asked, while N associates a set of possible user

responses Nq with each q ∈ Q . The response function D specifies

a response distribution for each query. It maps from R × S∗ to a

distribution Nq for each q ∈ Q , defining a distribution over user

responses given any possible true reward function r and history of

past states; this reflects possible noise in user responses. The query
cost function C : Q × S∗ → IR+ specifies the cost of asking a query
given a state history; this reflects the cognitive, communication,

interruption, delay or other costs imposed on the user by a query.

An agent acting in an EE instance knows all problem elements

except r . In other words, it doesn’t know the true reward r , but
only the space and distribution R of possible rewards. This reflects

the fact that an agent has incomplete and imprecise information

about a user’s true preferences. The agent can at each stage choose

to ask queries or take actions, specifically:

(1) An initial state s , drawn from β , is revealed (the MDP state

is fully observable).

(2) Repeat infinitely:

(a) The agent asks the user zero or more queries. The user

responds to each according to the query response function

(w.r.t. r and the state history).

(b) The agent executes some a ∈ A and the state transitions

according {Psa }, with the new state revealed.

A query strategy {{Q × N }∗ × S }∗ → Q ∪ A maps from a query,

response and state history to either the next query to ask or control

action to take. The goal of the agent is to maximize expected total

discounted reward w.r.t. the user’s (unknown) reward function r
less discounted query costs.

2

It is not hard to show that elicitation and control are coupled

and should be integrated. Indeed, in the worst case, the optimal

policy without querying can be arbitrarily worse than a policy that

integrates elicitation:

Example 1. Let S = {s0, . . . , sn , selicit}, with the initial state drawn

uniformly at random. Let R reflect that exactly one of {s0, . . . , sn }
gives the user reward x (others have reward zero), with each equally

likely. The agent can deterministically move from any state to any

other at zero cost, except that a transition to selicit costs y. A single

(zero-cost, noise-free) query reveals which si is rewarding, but can
only be asked at selicit.

The optimal query-free policy randomly traverses the si , yielding

value
x

n (1−γ) .
3
If

xγ 2 (n−1)
n (1−γ) −γ (y+

x
n) ≥ 0, the optimal strategy with

queries moves first to selicit, issues the query—note that a “plan” is
needed even be able to query—and then moves to (and stays at) the

rewarding state, yielding value
x
n − yγ +

xγ 2

1−γ .

Let n,x ,y → ∞, with n doing so asymptotically faster than x ,
and x faster than y. The value of the query-free policy approaches

0 while the query strategy approaches∞.

In the remainder of this section, we draw connections between

the EE model and several related decision-making models. Exploit-

ing these connections is difficult in the domain we consider, but

they may be valuable in other settings and are of theoretical interest.

We first note that an EE instance can be formulated as a partially-
observable MDP (POMDP) [32]. Full proofs are in the supplemental

material.
4

Theorem 1. Any EE instance can be formulated as a POMDP.

Proof Sketch. The fundamental idea of the proof is to embed

the set of possible rewards in the POMDP state space. This transfor-

mation is related to Poupart et al.’s [22] method of solving Bayesian

reinforcement learning problems by formulating them as POMDPs.

State transitions act on S , but never change the reward embedded

2
We make two assumptions for ease of exposition. First, MDP state transitions evolve

more slowly than any “reasonable” number of queries. If this were not the case, we

could model exogenous state transitions that occur when queries are asked or introduce

time-based discounting to account for query “delays.” Second, (non-query) actions

provide no reward information. The extension to actions with information content is

straightforward.

3
Note that the user, not the agent, experiences the reward, so without user feedback,

the agent cannot observe which state is rewarding even as it occupies it.

4
Available at http://www.cs.toronto.edu/~perrault/EE-supplement.pdf

http://www.cs.toronto.edu/~perrault/EE-supplement.pdf

in the state; thus, for any distinct r , r ′ ∈ R, the corresponding em-

bedded state sets S (r) and S (r
′)
do not communicate. The reward

uncertainty distribution may be discrete or continuous (necessitat-

ing a POMDPwith infinite states in the latter case). The action space

A is augmented by the set of queries, so the agent can ask queries

or take (original) actions; queries cause no state transition. The

observation function for (original) actions reflects full observability

of the (original) state space (observations are the states themselves),

while for queries, the observation function captures the distribution

over responses.

□

Note that the POMDP belief state for an EE problem will repre-

sent the agent’s posterior over R, reflecting information captured

about a user’s preferences by queries and responses. POMDPs have

been used to model elicitation problems in the past [4, 13]. These

formulations differ from ours because they require only one state for

each potential reward function. Unfortunately, exactly solving even

simple POMDPs is often intractable due to their doubly-exponential

complexity.

There is a direct connection between EE and reinforcement learn-

ing (RL) as well.

Observation 1. Consider an RL problem ⟨M⟩ that consists of an
MDPM which is known to the agent except for the reward function,
and whenever the agent transitions into a state, it receives the reward
for that state. This problem can be reduced to EE and the reduction
requires increasing the number of states by a factor of O (|S | × |A|).

Proof. Create an EE that retains the model details (states, ac-

tions, transitions, rewards, discount). We let reward uncertainty R
be an uninformative prior. For each state s , we allow value queries
for any state-action pair (s,a), which asks a “user” (representing

the environment) for the reward for that pair, and the response

function represents the RL (stochastic) reward for that pair. Query

cost is zero if asking about the action just taken at the previous

state, and infinite otherwise. To encode this query cost function, the

EE state must include the previous state visited and action taken,

which causes a state space blowup of |S | × |A|.
In this EE instance, the only “available” query at a state is “free,”

so it is optimal to always ask it, giving an EE agent the same infor-

mation as an RL agent. □

Lastly, suppose we ignore an EE agent’s query strategy or, equiva-

lently, make no queries available. The optimal control policy under

reward uncertainty for a risk-neutral agent can be solved as an

MDP.

Observation 2. Given an MDP with uncertain reward R, its (risk-
neutral) optimal policy is that of an MDP where each state-action
reward is its expected reward under R. (This holds even if rewards are
correlated under R.)

This follows from a simple argument using linearity of expecta-

tion. We exploit this observation when defining myopic expected

value of information in the next section.

4 EE WITH RELATIVE VALUE QUERIES
A relative value query (RVQ) asks the user to articulate the difference
in value or utility between states. An RVQ (x0,x1) comprises two

points in a d-dimensional state space. A response y is the user’s

estimate of the difference r (x0) − r (x1) in their immediate rewards.

We study RVQs because they naturally capture the way that users

make decisions in certain domains. For example, in the HVAC

setting an RVQ captures a query like “In the current conditions,

what electricity cost savings would be required so that raising the

temperature by one degree for one hour would be acceptable?"

When a user sets their HVAC system in a given context, they are

“reasoning” over the set of RVQs. In this section, we examine EE

systems that use RVQs.

It is instructive to compare RVQs to several other query types

[29] in the HVAC domain. Value queries ask the user directly for her
utility for a state, e.g., “How much is it worth to hold temperature

and humidity at (t ,h) for the next two hours?” This is a challenging
query for users in the home HVAC setting. Demand queries ask
the user for her most preferred outcome from a set (e.g., “Which

of these three configurations do you prefer?” or “Which of these

four actions is best under the current conditions?” Asking a user

for her preferred action requires the user to reason about action

costs and benefits, exactly what an intelligent agent is supposed

to do for the user, and also has some ambiguity w.r.t. its semantics

(e.g., immediate vs. planning value). RVQs, by contrast, separate the

state reward from the cost of reaching that state and do not require

the user to reason about expectations. Asking for, say, preferred

temperature and humidity in isolation makes it difficult to integrate

cost considerations.
5

A first key observation is that the MDP embedded in an EE

instance can be solved optimally using only RVQs. Having only dif-

ference information for all state pairs means that state rewards are

known only up to an additive factor. However, by the equivalence

of utility functions (in this case, the MDP value function) under

positive affine transformation, it immediately follows that adding a

constant to the reward function does not change the optimal policy.

Observation 3. An MDP can be solved optimally given only
information about the differences in rewards between a collection of
state-action pairs.

To exploit RVQs effectively, we need a learning method that,

given a set of responses to RVQs, can estimate the rewards (and

uncertainty) of all states. GPs can be adapted to this purpose while

maintaining the critical properties that drive their usefulness for

PE, in particular, the ability to estimate the expected value of infor-

mation of a query.

We show that the GP posterior update has a closed form in

the case of RVQs. Since an RVQ represents the difference of two

Gaussian random variables (RVs) with known covariance, the affine

property of multivariate Gaussian RVs ensures they are closed

under linear transformations.

Observation 4. Let X be an RV distributed as N (µ, Σ), c be a
constantM-dimensional vector, and B a constantM ×N matrix. Then
c + BX ∼ N (c + Bµ,BΣBT).

5
Binary comparisons [5] are even easier than RVQs to answer, but they require more

sophisticated inference techniques (e.g., variational or MCMC).

Suppose our training data consists of RVQ responses.
6
Our n

training points have form (x0,x1,y), where (x0,x1) is the RVQ

(two states) and y its (noisy) response, i.e., estimation of reward

difference. Let X0 (resp., X1) be the matrix resulting from stacking

the x0 (resp., x1) vectors, and let Xtest be the set ofm test points,

arranged as am × d matrix. To compute the posterior of the GP at

Xtest (states at which we wish to predict reward), we construct an

affine transformation matrix B. Let X be the data points stacked as

X =
[Xtest

X0

X1

]
, a matrix of size (m + 2n) × d . Define

B =

[
Im,m 0m,2n
0n,m B

diff

]
(4)

where B
diff

is [In,n −In,n] , I is the identity matrix and 0 is the zero

matrix. (B
diff

is n × 2n and B is (m + n) × (m + 2n).) B transforms

the training rows into differences without affecting the test points.

In the absence of observations, the distribution of X—the RV

that represents the distribution over X—is just the zero-mean, co-

variance Σ Gaussian prior, where Σ results from our chosen kernel.

Applying Obs. 4 using B yields an RV that relates the training and

test points: a Gaussian with covariance BΣBT and mean B0 = 0.
This Gaussian has dimensionm+n (cf. the originalm+2n)—we now
have a single dimension for each training example. The conditional

GP (Eqs. 2, 3) in the transformed space yields the posterior at the

test points.

As in a standard GP model, we can also incorporate observation

noise. Suppose that each observation y has i.i.d. Gaussian noise

with variance σ 2
. We model this with

σ 2

2
noise on the underlying

Gaussian, which results in observation noise of σ 2
on the difference.

Non-i.i.d. noise is handled by replacing σ 2I with our chosen noise

matrix.

Using this procedure for posterior updates, we can estimate (my-
opic) EVOI of a query using a GP, adapted to the MDP setting. The

estimate is myopic because it does not account for future queries.

Myopic EVOI is the amount our expected reward increases as a

result of asking a query w.r.t. the current preference predictions of

the GP. In our experiments, we use EVOI to determine if a query

increases our discounted reward more than the cost of the query.

Suppose we want to estimate the EVOI of an RVQ q. Let R be our

current reward uncertainty and R (q,y) be the posterior after asking
q and receiving response y. Let Y be an RV representing the RVQ

response according to R. Applying Obs. 2, let V ∗ be the optimal

policy value under belief R and letV ∗q,y be the optimal policy value

under belief R (q,y) .

Definition 1. The (myopic) (EVOI) of a queryq in EE is EY [V ∗
(q,y)−

V ∗].

In practice, we compute the expectation by sampling query re-

sponses from R and averaging the changes in policy value. We use

the following procedure:

(1) Sample n query responses for q from the GP posterior.

(2) For each query response y:
(a) Add y to the set of query responses (i.e., treat it as if it

were a query that we actually asked the user).

6
This method can be modified to accommodate any combination of training points as

long as each represents the result of applying a linear transformation. This includes

ordinary value queries.

(b) Calculate the value of the optimal policy under the new

set of query responses and save it.

(c) Remove y from the set of query responses.

(3) Return the optimal policy value, averaged over all the re-

sponses, minus the original optimal policy value.

Random forest model: As a point of comparison, we also define a

random forest (RF)model [7, 11] for EE with RVQs. We choose an RF

because of its excellent performance with small amounts of training

data. We train the RF using each training example twice, (x0,x1,y)
and its “reversed” RVQ as (x1,x0,−y), so the model is informed of

the “opposite” prediction. At test time, we predict a response to q′

by averaging the model response to q′ and the negative response to
the reversal of q′. To evaluate reward at a set of states, we formulate

each as an RVQ that compares it to the state most observed in the

training data. Unlike the GP, this model is incapable of evaluating

EVOI of queries because the RF does not estimate the uncertainty

of its predictions.

5 QUERY RESPONSE AND COST MODEL
We now develop a model for users’ responses to queries, i.e., how

accurate and how costly such responses are. We are motivated by

the HVAC setting, where RVQs compare states representing the

internal and external temperature, humidity, time, etc. Our response

and cost models should satisfy the following principles:

(1) They should align with the concept of just noticeable differ-
ence (JND) [12]. An RVQ comparing two states that differ

only in internal temperature is more difficult to answer if

the difference is small than if the difference is large. Greater

“difficulty” means higher cognitive cost and more response

noise.

(2) It is more difficult to compare states that differ in more ways

rather than fewer; e.g., it is easier to compare states that

differ only in internal temperature than states that differ in

internal/external temperature/humidity.

(3) It is easier to answer queries about states that are similar to

the current state, or to one that was visited (i.e., experienced)

recently. For example, it is easier to compare two “summer

states” in the summer than it is in the winter.

(4) The mere act of answering a query is expensive because it is

disruptive. Thus, there is a lower bound on query response

costs.

Query response model: We use the following query response

model:

D (xq0,xq1) = N (r (xq0) − r (xq1), σnoise) (5)

σnoise = cfn
+ c

dn
(| |xq0 − xq1 | |1+

min

0≤i≤t
(1 + δ)t−i (| |xq0 − xi | |1 + | |xq1 − xi | |1)) (6)

where xq0 and xq1 are the queried states, xi is the sequence of

past/visited states and δ is the user’s discount factor.

Modern psychophysics [12] assumes that sensor noise is the

cause of JND. The fixed noise constant c
f_n

ensures that noise is

non-zero. The second and third desiderata are satisfied by using

the L1-distances between states, which captures both the number

of (state feature) differences and their magnitude, weighted by the

distance noise constant c
d_n

. We capture the temporal component

(i.e., less noise when queried states are close to recently visited

states) by discounting distances to previous states and using the

state with least discounted distance. The literature generally em-

braces the notion that sensors are well-calibrated, thus, we use an

unbiased response model.

Our query cost model has the same form, with one addition. We

augment the model to reflect that queries near the JND are more

costly by adding a term that decreases with the distance between

xq0 and xq1:

C (xq0,xq1) = cfc
+ c

dc
(| |xq0 − xq1 | |1+

min

0≤i≤t
(1 + δ)t−i (| |xq0 − xi | |1 + | |xq1 − xi | |1)) +

cJND

1 + e | |xq0−xq1 | |1

(7)

6 EXPERIMENTS
Our experiments assess: (i) how the GP-based approach to EE com-

pares to several natural baselines; and (ii) how filtering prospective

queries by EVOI affects both the quality of the learned policy and

overall utility accrued. We first describe our experimental setup.

Our MDP model is derived from HVAC and temperature data from

Pecan Street Inc. [27]. The states of the MDP contain the time, date,

exterior and interior temperature. We discretize time into hours

and temperatures into 20 buckets between 5 and 45
◦
C. There are

3.5 million states. There are 10 HVAC control actions (5 heating,

5 cooling). Control response depends on properties of the HVAC

system and thermal properties of the house in question, which are

selected randomly from a range of realistic values. Action costs are

determined by electricity prices in Austin, TX (where the data was

collected). The user’s reward for state s has the form:

r (s)=exp

[
−h

(int(s)− (int∗+bias(ext(s)−int∗)))2

w

]
(8)

where int
∗
is the user’smost preferred internal temperature, int(s)

and ext(s) are the internal and external temperatures in state s , and
bias represents the degree to which a user’s preference for internal

temperature is affected by external temperature. Parameters h and

w control the height (strength) and width (breadth) of a user’s

utility function. int
∗
, w , h and bias are drawn from U (18, 22),

U (0, 20), U (0, 3), and U (0, 0.4), respectively. All users discount
exponentially at a rate of 1% per period (hour). Query response/cost

models use: c
fn
= c

fc
= c

dc
= c

dn
= 0.05 and cJND = 2.5.

We run two sets of experiments. In the first, we randomly gener-

ate a user and sample weather for 1000 consecutive hours from the

Pecan Street data. The second studies the effect of changing con-

text explicitly over 1500 hours. The first 500 hours are consecutive

starting in either Dec., Jan. or Feb. The next 500 are consecutive in

Jun., Jul. or Aug. The final 500 return to the same time steps as the

first. In Austin, TX. the average temperature difference between

the two contexts (summer and winter) is around 15
◦
C.

While performance is affected by the choice of user utility func-

tion, the model can accommodate any form of utility, as long as

it depends only on attributes in the state vector. This stands in

contrast with previous work on learning HVAC utilities (e.g., [30]).

We select the action for the current time step by solving an MDP,

representing the next 24 hours, using value iteration. For EVOI

estimation of queries, we use 10 response samples and a longer

lookahead of 50 hours. We scale up the EVOI estimate by the time

horizon of the experiment divided by the evaluation horizon, taking

discounting into account:

∑
true_horizon

i=0
(1−γ)i∑sample_horizon

i=0
(1−γ)i

. This will tend to over-

estimate EVOI because a query response is likely more valuable

in the near-term, before the context changes. Note that we do not

consider horizon effects in EVOI estimates.

Query strategies: In each query strategy, a single candidate query

is proposed at each time step, and then the strategy decides whether

or not to ask the candidate query. The strategies differ in how they

decide whether to ask the candidate query and how they inte-

grate responses. The candidate query compares (i) a sampled next
state from transitions induced by the current best action, and (ii)

a sampled next state using the second best action. If the states are

identical, we re-sample. This meta-strategy is effective because

(i) it provides information that is immediately relevant, and (ii) it

asks queries that tend to be close to the current state. More com-

plex methods could increase performance at the cost of additional

computation.
7

We compare the performance of seven query strategies: three

that are GP-based, two RF-based, and two baselines:

• GP_always uses a GP-based preference prediction model. It

does not calculate EVOI and always asks the proposed query.

• GP_always_limit is the same, but limited to 200 (250 in the

setting with length 1500) queries.
8

• GP_EVOI also uses a GP-based model, but only asks the

proposed query if its EVOI is greater than its cost.

• RF_always uses a random forest and always asks the pro-

posed query (it does not use EVOI).

• RF_always_limit is the same, but limited to 200 (250) queries.

• omni is optimally omniscient, and takes the action of the

optimal policy in the underlying (known-reward) MDP with-

out querying. It provides an upper bound on performance,

which cannot be realized practically.

• null always takes the null action, i.e., does nothing.

BothGPmodels use the squared exponential kernel with lengthscale

0.1. The random forest uses 25 decision trees.

Computing:We run all experiments on Intel Broadwell CPUs at

2.1 GHz. At time 1500—when all methods have their largest set

of responses (i.e., maximal demands on GP computation)—all non-

baseline strategies take 0.1s (on average) to select the next control

action. GP_always and RF_always (and their query-limited ver-

sions) do not estimate EVOI and take 0.3s to select a query, whereas

GP_EVOI takes 2.0s. The strategies also differ in the time required

to evaluate rewards given the current query set: GP_always takes

1.2s, RF_always 0.6s, and GP_EVOI and the query-limited strate-

gies 0.1s—they are more efficient since they ask fewer queries. All

methods support real-time response.

Results (1000 steps): We first analyze total reward, including

query cost, accrued by each strategy. Fig. 1 shows (average) re-

ward accrued over time for five of the strategies. Because each user

has different utility height and width, we normalize results w.r.t.

the maximum policy value, max(omni), observed in that instance

7
In theory, we could use EVOI to determine which query has highest value, but given

the vast space of RVQs, we use this heuristic to limit query scope.

8
We choose these limits because they are approximately the same as the average

number of queries asked by GP_EVOI.

Figure 1: Reward accrued vs. time. Figure 2: Policy value vs. time. Figure 3: Query cost vs. time.

Query Mean total Mean discounted

strategy reward ($) reward ($)

GP_always 663.9 48.0

GP_always_limit 861.0 55.0

GP_EVOI 892.1 64.6

RF_always 640.4 50.4

RF_always_limit 820.9 55.7

omni 1248.4 124.6

null 514.2 57.3

Figure 4: Mean total reward and discounted reward.9

by the omni baseline. This ensures users with large utility values

do not dominate the data.

omni and null perform at a constant level of 44.6% and 18.8%,

respectively, of max(omni), and are not shown in Fig. 1. GP_EVOI

outperforms GP_always and RF_always at each point (each per-

forms similarly to null). The differences are statistically significant

from iteration 90 onward (with p < 0.05). We show below that

GP_EVOI’s success is due to its ability to achieve control policy

quality similar to the other methods, while incurring much lower

query cost. This illustrates that the ability to estimate query EVOI

is invaluable in this domain.

The query-limited algorithms (GP_always_limit and

RF_always_limit) represent a more traditional PE approach:

they initially ask many queries to learn a high quality policy and

exploit that policy, receiving high reward for the remainder of the

instance. Nevertheless, these algorithms perform poorly from the

perspective of discounted reward. Fig. 4 shows the total discounted

and non-discounted rewards earned by the seven strategies.

While the query-limited algorithms have comparable performance

without discounting, GP_EVOI outperforms GP_always_limit by

19% and RF_always_limit by 18% with discounting,
10

and the

query-limited strategies fail to outperform null. This illustrates a

key advantage of the EE approach: deferring queries may increase

discounted utility.

9
Reflecting instance variability, total reward std. is around $780 for all strategies and

discounted reward std. around $75.

10
The difference is statistically significant at p < 0.01 using a paired t-test.

Wenext analyze the quality of the policy learned by each strategy.

Fig. 2 shows (ground truth) expected value of the current (optimal)

control policy (as specified by Obs. 2, assuming no more queries

are asked) evaluated under the true reward function. omni and null
(not shown) perform at a constant level of 80% and 1.7%, respec-

tively, of max(omni). All non-baseline strategies perform similarly

w.r.t. policy value, with GP_always having a slight advantage over

GP_EVOI and the query-limited algorithms falling behind their un-

limited counterparts. The policy quality of the query-limited strate-

gies increases until they stop querying at time 200 and declines

slowly thereafter. Because the instance is relatively short, the qual-

ity does not decline much: 10% on average for GP_always_limit

from time 200 (when querying stops) to time 1000.GP_EVOI falls be-

hind GP_always because it asks many fewer queries: 43.8 (σ = 9.7)

queries on average by time 100, 121.1 (σ = 25.8) by time 500 and

179.6 (σ = 39.4) by time 1000.

The query numbers above lead to significant query cost sav-

ings for GP_EVOI. Fig. 3 shows the query cost accrued by

GP_always, GP_always_limit, and GP_EVOI (RF_always and

RF_always_limit are not shown since their query costs are similar

toGP_always andGP_always_limit, respectively; omni and null

are not shown since they ask no queries). Low query cost is a major

factor in GP_EVOI’s strong performance. By time 100, GP_EVOI

has incurred total query cost of $15.4 vs. $35 for GP_always. By

time 500 and 1000, GP_EVOI’s costs are $40.2 and $58.4, resp. (vs.

$173 and $348 for GP_always). Average cost per (asked) query for

GP_EVOI is similar to that of GP_always, $0.32 vs. $0.35, showing

thatGP_EVOI’s advantage lies largely in asking queries with higher

EVOI rather than lower cost.

Results (1500 steps, two contexts): Our second set of experi-

ments studies (i) how the strategies handle changing context; and

(ii) whether GP_EVOI recognizes that queries in a previous context

have low EVOI after spending many steps in a different context.

Figs. 5, 6 and 7 show the effects of changing context. The reward

accrued by the strategies (Fig. 5) is quite similar to the original

experiments. The query-limited strategies suffer heavily in the sec-

ond context because they lack up-to-date reward information. This

illustrates a key challenge for traditional preference elicitation tech-

niques in a setting with evolving context—the need to detect that

Figure 5: Reward accrued vs. time.

Figure 6: Policy value vs. time.

Figure 7: Query cost vs. time.

their information is out-of-date and reinitiate querying. In contrast,

Fig. 7 shows that GP_EVOI begins to query more aggressively af-

ter the shift occurs at time 500 (transition to summer). Note that

RF_always and GP_always also experience a spike in query cost

at time 500, but this is due to the lack of a useful state history at

the time of transition, resulting in higher query costs and lower

accuracy. We can tell that GP_EVOI’s increase is not solely due to a

less useful state history because there is no corresponding increase

for GP_EVOI at the second context change at time 1000 (return

to winter)—GP_EVOI recognizes that it already has a high quality

model for the new context and does not increase its querying.

In policy quality terms (Fig. 6), the first context change results

in a drop of around 17% on average, which is similar across the

non-baseline strategies. The drop occurs because the strategies lack

information about the reward function in the new context and not

because the optimal policy has a different value: omni achieves an

average policy quality of 76% and 74% of max(omni) in the winter

and summer contexts, respectively. As in the previous experiments,

GP_EVOI lags behind GP_always in policy quality, but asks many

fewer queries, and thus achieves a higher reward.

The context change slightly increases the number of queries

asked by GP_EVOI: 46.4 (σ = 9.8) by time 100, 132.9 (σ = 19)

by time 500, 204 (σ = 23.9) by time 1000 and 254 by time 1500

(σ = 36.5).

The difference in how GP_EVOI handles the context changes

compared to the other strategies indicates that the benefit of query

EVOI estimation increases with a rapidly changing context. For

example, in a model where the context rotated every 10 steps,

GP_EVOI could concentrate its queries in the later periods of each

context, when more state history is available. Meanwhile, the strate-

gies without EVOI estimation would constantly suffer higher query

costs due to the lack of relevant state history.

7 CONCLUSION
We have introduced experiential elicitation, a framework for prefer-

ence elicitation in settings where a user’s ability to (easily) answer

queries is context dependent. Our model of experiential elicitation

has tight connections to POMDPs, RL and uncertain-reward MDPs.

We studied a new query type for GPs, the relative value query, that
is well-suited to the home HVAC domain. We showed that GPs nat-

urally accommodate RVQs and offer effective EVOI computation,

which is critical for trading off query cost vs. value. Our exper-

iments show that GP-based elicitation using EVOI outperforms

other natural baselines in the HVAC setting.

Interesting future directions for EE remain. Most obvious is

the significant gap between the performance of our approach and

that of the optimal omniscient algorithm. While this gap cannot

be closed entirely, a more sophisticated query strategy may have

significant effect. In particular, the model allows multiple queries

per time step, which our strategy does not use. With additional

computational resources, we could use heuristics to suggest a list

of potential queries, evaluate myopic EVOI for each and then ask

the query (or queries) that offers the most EVOI net of query cost.

General EE problems may be much harder than the well-behaved

HVAC problem, where there is limited incentive to deviate from

a simple control strategy to seek out better queries. We showed

(Example 1) that in the worst case, the EE system may be required

to make a deviation of unbounded cost from the optimal policy to

receive any reward at all, and the approach we take in the HVAC

domain would perform poorly in such a setting. It remains to be

seen whether such difficult instances arise in practice.

In the HVAC domain, it may be desirable to integrate budget

constraints, i.e., the optimal policy in the MDP is subject to a bound

on expected spending. Our approach may be extensible to this

setting through the use of budgeted constrained MDP techniques

[1].

The EE approach is natural for (mobile or other) personal as-

sistants that need to learn the user’s preferences about types and

timing of notifications, reminders, recommendations, etc.

ACKNOWLEDGMENTS
Perrault was supported by OGS. We gratefully acknowledge the

support of NSERC.

REFERENCES
[1] Eitan Altman. 1999. Constrained Markov Decision Processes. Chapman and Hall,

London.

[2] Eyal Beigman and Rakesh Vohra. 2006. Learning from Revealed Preference. In

Proceedings of the Seventh ACM Conference on Electronic Commerce (EC’06). Ann
Arbor, 36–42.

[3] Edwin V. Bonilla, Shengbo Guo, and Scott Sanner. 2010. Gaussian Process Prefer-

ence Elicitation. InAdvances in Neural Information Processing Systems 23 (NIPS-10).
Vancouver.

[4] Craig Boutilier. 2002. A POMDP Formulation of Preference Elicitation Problems.

In Proceedings of the Eighteenth National Conference on Artificial Intelligence
(AAAI-02). Edmonton, 239–246.

[5] Craig Boutilier. 2013. Computational Decision Support: Regret-based Models

for Optimization and Preference Elicitation. In Comparative Decision Making:
Analysis and Support Across Disciplines and Applications, P. H. Crowley and T. R.

Zentall (Eds.). Oxford University Press, Oxford, 423–453.

[6] Darius Braziunas and Craig Boutilier. 2010. Assessing Regret-based Preference

Elicitation with the UTPREF Recommendation System. In Proceedings of the
Eleventh ACM Conference on Electronic Commerce (EC’10). Cambridge, MA, 219–

228.

[7] Leo Breiman. 2001. Random Forests. Machine Learning 45, 1 (2001), 5–32.

[8] Urszula Chajewska, Daphne Koller, and Ronald Parr. 2000. Making Rational

Decisions Using Adaptive Utility Elicitation. In Proceedings of the Seventeenth
National Conference on Artificial Intelligence (AAAI-00). Austin, TX, 363–369.

[9] Li Chen and Pearl Pu. 2004. Survey of preference elicitation methods. Technical
Report 52659. EPFL.

[10] Wei Chu and Zoubin Ghahramani. 2005. Preference learning with Gaussian

processes. In Proceedings of the Twenty-second International Conference onMachine
Learning (ICML-05). Bonn, 137–144.

[11] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. 2009. The elements of
statistical learning. Springer-Verlag New York.

[12] George A. Gescheider. 2013. Psychophysics: the fundamentals. Psychology Press.

[13] Hillary A. Holloway and Chelsea C. White, III. 2003. Question Selection for

Multiattribute Decision-aiding. European Journal of Operational Research 148

(2003), 525–543.

[14] Bowen Hui and Craig Boutilier. 2008. Toward Experiential Utility Elicitation

for Interface Customization. In Proceedings of the Twenty-fourth Conference on
Uncertainty in Artificial Intelligence (UAI-08). Helsinki, 298–305.

[15] Kshitij Judah, Alan Paul Fern, Prasad Tadepalli, and Robby Goetschalckx. 2014.

Imitation Learning with Demonstrations and Shaping Rewards. In Proceedings of
the Twenty-eighth AAAI Conference on Artificial Intelligence (AAAI-14). Quebec
City, 1890–1896.

[16] Daniel Kahneman. 2011. Thinking, fast and slow. Macmillan.

[17] Tiep Le, Atena M Tabakhi, Long Tran-Thanh, William Yeoh, and Tran Cao Son.

2018. Preference elicitation with interdependency and user bother cost. 1459–

1467.

[18] Jonas Mockus. 1989. Bayesian approach to global optimization: theory and appli-
cations. Vol. 37. Springer Netherlands.

[19] Andrew Ng and Stuart Russell. 2000. Algorithms for Inverse Reinforcement

Learning. In Proceedings of the Seventeenth International Conference on Machine
Learning (ICML-00). Stanford, CA, 663–670.

[20] Phillip Odom and Sriraam Natarajan. 2016. Active advice seeking for inverse

reinforcement learning. In Proceedings of the Fifteenth International Joint Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS-16). Singapore,
512–520.

[21] Pollara. 2013. BMO Psychology of House Hunting Report.

https://newsroom.bmo.com/2013-05-02-BMO-Psychology-of-House-Hunting-

Report-Home-Buyers-Visited-an-Average-of-10-Homes-Before-Buying. (2013).

Accessed: 2018-05-08.

[22] Pascal Poupart, Nikos Vlassis, Jesse Hoey, and Kevin Regan. 2006. An Analytic

Solution to Discrete Bayesian Reinforcement Learning. In Proceedings of the
Twenty-third International Conference on Machine Learning (ICML-06). Pittsburgh,
697–704.

[23] Martin L. Puterman. 1994. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Wiley, New York.

[24] Carl Edward Rasmussen and Christopher K. I. Williams. 2006. Gaussian Processes
for Machine Learning. The MIT Press.

[25] Kevin Regan and Craig Boutilier. 2009. Regret-based Reward Elicitation for

Markov Decision Processes. In Proceedings of the Twenty-fifth Conference on
Uncertainty in Artificial Intelligence (UAI-09). Montreal, 454–451.

[26] Kevin Regan and Craig Boutilier. 2011. Eliciting Additive Reward Functions for

Markov Decision Processes. In Proceedings of the Twenty-second International
Joint Conference on Artificial Intelligence (IJCAI-11). Barcelona, 2159–2164.

[27] Joshua D. Rhodes, Charles R. Upshaw, Chioke B. Harris, Colin M. Meehan,

David A. Walling, Paul A. Navrátil, Ariane L. Beck, Kazunori Nagasawa, Robert L.

Fares, Wesley J. Cole, et al. 2014. Experimental and data collection methods for a

large-scale smart grid deployment: Methods and first results. Energy 65 (2014),

462–471.

[28] Paul A. Samuelson. 1948. Consumption Theory in Terms of Revealed Preference.

Economica 15, 60 (1948), 243–253.
[29] Tuomas Sandholm and Craig Boutilier. 2006. Preference Elicitation in Com-

binatorial Auctions. In Combinatorial Auctions, P. Crampton, Y. Shoham, and

R. Steinberg (Eds.). MIT Press, Cambridge, MA, 233–264.

[30] Mike Shann and Sven Seuken. 2013. An Active Learning Approach to Home

Heating in the Smart Grid. In Proceedings of the Twenty-third International Joint
Conference on Artificial Intelligence (IJCAI-13). Beijing, 2892–2899.

[31] Mike Shann and Sven Seuken. 2014. Adaptive home heating under weather

and price uncertainty using GPs and MDPs. In Proceedings of the Thirteenth
International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS-14). Paris, 821–828.

[32] Richard D. Smallwood and Edward J. Sondik. 1973. The Optimal Control of

Partially Observable Markov Processes over a Finite Horizon. Operations Research
21 (1973), 1071–1088.

[33] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. 2012. Practical Bayesian

Optimization of Machine Learning Algorithms. In Advances in Neural Information
Processing Systems 25 (NIPS-12). Harrahs and Harveys, Lake Tahoe, 2951–2959.

[34] Ngoc Cuong Truong, Tim Baarslag, Gopal Ramchurn, and Long Tran-Thanh.

2016. Interactive scheduling of appliance usage in the home. In Proceedings of
the Twenty-five International Joint Conference on Artificial Intelligence (IJCAI-16).
869–875.

[35] Huan Xu and ShieMannor. 2009. Parametric Regret in UncertainMarkovDecision

Processes. In 48th IEEE Conference on Decision and Control. Shanghai, 3606–3613.

	Abstract
	1 Introduction
	2 Background
	3 A Model of Experiential Elicitation
	4 EE with Relative Value Queries
	5 Query Response and Cost Model
	6 Experiments
	7 Conclusion
	Acknowledgments
	References

