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About me: Cornell

• Computational sustainability: spatially-balanced Latin squares
• Improved from exponential to !(#$)
• Leads to computer-aided discovery of constructive procedures for 

combinatorial objects (LeBras, Gomes and Selman, 2012)
• Machine learning in robotics
• Using supervised learning to 

“train” robots to manipulate
objects (and generalize
to unseen objects)
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The School 
Fund

• Co-lead developer on 
crowdfunding platform 
for secondary school 
scholarships for students 
in the developing world
• 1183 years of education 

funded
• 12 partners in 9 countries



About me: University of Toronto

• Using satisfiability (SAT) to solve stable-
matching problems with 
complementarities 
• Matching of medical residents to hospital 

internships uses incomplete alg.
• SAT is complete, good performance
• Using SAT has other advantages
• Flexibility in adding constraints
• Can search over the set of matchings
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Drummond, P. and Bacchus (IJCAI-15)
P., Drummond and Bacchus (AAMAS-16)



This talk: autonomous agents for efficient 
electricity markets
• Why study electricity in AI?
• Aligning predictability incentives between consumers and suppliers
• The big picture: market design, machine learning
• P. and Boutilier (IJCAI-17)

• Experiential elicitation for electricity management agents
• The big picture: preference elicitation, sequential decision-making, machine 

learning
• P. and Boutilier (under review)
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Other work in electricity: P. and Boutilier (AAMAS-14) and P. and Boutilier (IJCAI-15)



Why study electricity in AI?
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• Reduce greenhouse gas (GHG) emissions
• California target: 80% below 1990 levels 

by 2050
• Electrify and decarbonize electricity 

generation

Williams et al. (2012)



Achieving high renewable penetration

• Overbuild

• Transmission

• Storage
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Change consumer demand

• Changeable consumer demand, currently:
• Air conditioning (around 30% of all electricity at peaks in summer)
• Various other appliances (dishwashers, washing machines, dryers)

• After electrification:
• Personal vehicles (about 60% of all energy used in transportation)
• Space heating and water heating
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The problem with demand response

• Do you notice?
• What do you do?
• Need a response policy
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The value of autonomous agents (Part I)
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• Redesign electricity markets 
around autonomous agents to 
increase market efficiency while 
paying attention to strategic 
aspects
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The value of autonomous agents (Part II)
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• Learn a household’s 
preferences and take actions
on their behalf
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Aligning Predictability Incentives 
Between Consumers and 
Suppliers
P. and Boutilier, IJCAI-17
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Electricity market
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Consumer pays per 
kWh used, a fixed-
rate tariff

Supplier buys electricity in 
advance, but can also buy at the 
last minute for a higher price

Generator

Misalignment of incentives: Consumer’s cost does not 
depend on predictability, but supplier’s cost does



Prediction-of-use (POU) tariffs

• Each consumer makes a prediction ahead of time
• They are charged based on:
• How much they consume
• How accurate their prediction was

• Consumers can form groups and be treated as one large consumer
• But they can only do this if they can agree on how to split the costs
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Robu, Vinyals, Rogers, and Jennings. Efficient Buyer Groups with 
Prediction-of-Use Electricity Tariffs (2017).



Contributions

• Extend POU games to support multiple profiles
• Extension remains convex
• Creates new enforcement problems addressed by separating functions

• Experimentally validate our approach using learned utility models
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Outline

• Why study electricity in AI?
• Aligning predictability incentives between consumers and suppliers 
• Intro to cooperative games
• Prediction-of-use games
• Multiple-profile prediction-of-use games
• Empirical results

• Experiential elicitation for electricity management agents
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Cooperative games

• Set of agents !
• Can form coalitions
• Characteristic value function ": 2% → ℝ represents value each coalition can 

achieve
• Agents can defect to other coalitions, but are forced to cooperate 

within coalition
• Coalition can enforce contracts
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Sharing benefits

• Definition (stability): no set of agents has incentive to defect to 
another coalition
• Two major approaches: 
• Core allocation: strong stability guarantees, but hard computation
• Shapley value: fairness, “easy” to approximate, no stability guarantee

• If game is convex (has a supermodular characteristic function):
• Shapley value (and some approximations) is a core allocation (Shapley, 1971)
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Cooperative games and markets

• Market/cooperative game duality
• Shapley and Shubik (1969): exchange economies can be formulated as 

cooperative games
• Useful because cooperative games are more flexible than exchange 

economies
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Outline

• Why study electricity in AI?
• Aligning predictability incentives between consumers and suppliers 
• Intro to cooperative games ✓
• Prediction-of-use games
• Multiple-profile prediction-of-use games
• Empirical results

• Experiential elicitation for electricity management agents
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Robu et al. (2017) POU games model

!(#$, &$)Household
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Household
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• Each household has a 
distribution over consumption 
in next time period—a profile
• Households can form coalitions

• Coalition’s profile is sum of 
members’ profiles

• Each coalition predicts a 
baseline * ∈ ℝ
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Robu et al. (2017) POU model

• Three-parameter POU tariff:
• Charge ! for realized consumption
• Charge ! for each unit over baseline "
• Charge ! for each unit under baseline "

• Closed-form for optimal "
• Characteristic function is total cost in expectation
• Characteristic function is convex
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Limitations of POU games

• The only decision agents have in POU games is what profile to declare
• The choice of profile is made before the game starts
• Agent have utility functions—choosing the best profile is an 

optimization
• Optimal choice depends on what other agents choose
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Outline

• Why study electricity in AI?
• Aligning predictability incentives between consumers and suppliers 
• Intro to cooperative games ✓
• Prediction-of-use games ✓
• Multiple-profile prediction-of-use games
• Empirical results

• Experiential elicitation for electricity management agents
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Multiple-profile POU (MPOU) games

• Each profile has a value
• Each household is assigned a 

profile by the coalition
• Characteristic function (value of 

a coalition): 
sum of assigned profile values 
minus expected costs
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Cost sharing in MPOU games

• Theorem: MPOU games are convex
• Additional complexity does not interfere with convexity
• However, having multiple profiles creates a new issue
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Enforcing assigned actions

• Coalition assigns a profile to each agent
• Actions are only partially observable in MPOU
• Coalition knows each agent’s profiles
• Selected profile only known to agent
• Coalition observes realized consumption
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Example of defection

• Assigned profile with lower 
value (!"), pays ex-ante 
according to assignment
• Uses profile with higher 

value (!#)
• Defection not fully 

observable
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Incentivizing use of the assigned profile
• A separating function (SF) maps realized consumption to a payment 

from coalition to agent 
• Definition: !(#) is a separating function under assignment A of 

agents to profiles if:
• %& ' ! # + ) * + > %& ' ! # + ) * + (incentive)
• %& ' ! # = 0 (zero-expectation)

• Theorem: sufficient conditions for SF existence, and poly-size LP 
formulation
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Outline

• Why study electricity in AI?
• Aligning predictability incentives between consumers and suppliers 
• Intro to cooperative games ✓
• Prediction-of-use games ✓
• Multiple-profile prediction-of-use games ✓
• Empirical results

• Experiential elicitation for electricity management agents
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Results
• Agent utility 

functions learned 
from pecanstreet.org 
data
• POU: large social 

welfare loss due to 
lack of coordination
• MPOU: modest SW 

gain
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Contributions

• Extend POU games to support multiple profiles
• Extension remains convex
• Creates new enforcement problems addressed by separating functions

• Experimentally validate our approach using learned utility models
• Social welfare: POU < fixed-rate < MPOU
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Experiential Elicitation for 
Electricity Management Agents
P. and Boutilier, under review
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Representing humans in electricity 
interactions

• Passive observation is not 
enough
• Need preference elicitation 

(PE)
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Dual process theory

• System 1 (intuition): fast, frequent, emotional
• System 2 (reasoning): slow, infrequent, logical
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Kahneman (2011)



Dual process theory in AI

• System 1: intelligent assistants in daily tasks
• Energy use
• Personal assistants

• System 2: infrequent, impactful decisions
• Security games
• Apartment/house choice

• Preference elicitation (PE) has focused on system 2 decisions
• Assume that a user can respond accurately regardless of query asked
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Experiential elicitation

• Can better engage System 1 by asking questions about the current 
context
• What are you willing to pay to decrease the temperature by 1°F for one hour?

• Beneficial side effect: delay queries until they are relevant
• Increases discounted utility
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Contributions

• Introduce a model of experiential elicitation
• Develop an instance of the model focused on electricity use
• Introduce a relevant query type: the relative value query (RVQ)
• Gaussian process-based models naturally accommodate RVQs
• GP-based RVQ model performs well on synthetic data
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Outline

• Why study electricity in AI?
• Aligning predictability incentives between consumers and suppliers
• Experiential elicitation for electricity management agents
• Model of experiential elicitation
• Experiential elicitation with relative value queries
• Empirical results

39



Markov decision processes

• Markov decision processes (MDPs): sequential decision-making under 
uncertainty
• States !
• Actions "
• Transition function {$%&}
• Reward function (
• Discount factor )

• Goal: find a policy that maximizes discounted reward over time
• Smart thermostat application: Shann and Seuken (2013, 2014)
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Model of experiential elicitation

• MDP with unknown reward function
• Agent knows !: distribution over reward functions

• Set of queries #, each with:
• Set of responses $%
• Response distribution &% (with known dependence on state history and ')

• Query cost function (
• Depends on state history and query
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Model of experiential elicitation

• Repeat infinitely:
• The agent asks the user zero or more queries
• User responds according to response function
• Agent incurs query cost

• Agent chooses an action & state transitions according to transition function
• Goal: maximize reward minus query cost, w.r.t. to unknown reward 

function
• Observation: with risk neutral agent, can find optimal policy through 

MDP reduction
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Relationship to other models

• Theorem: reducible to partially-observable Markov decision process 
(POMDP)
• Intuitively related to reinforcement learning
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Outline

• Why study electricity in AI?
• Aligning predictability incentives between consumers and suppliers
• Experiential elicitation for electricity management agents
• Model of experiential elicitation ✓
• Experiential elicitation with relative value queries
• Empirical results
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Relative value queries

• Relative value query (RVQ) asks the user about difference in utility 
between states
• What are you willing to pay to decrease the temperature by 1°C for one hour?
• Formally ("#, "%), with response ': user’s estimate of ( "# − (("%)

• Observation: relative value queries are enough to solve MDP
• Question: how do we make state value estimates given RVQs?
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Gaussian processes (GPs)

• Universal function approximator
• Estimate at each point plus uncertainty 

info
• Naturally accommodates RVQs
• Difference of Gaussian is Gaussian

• (Myopic) expected value of information 
(EVOI) estimation: sample query 
responses from GP posterior, average 
change in policy value across samples

46

Rasmussen and Williams (2006)



Query response and cost models
• Use distance between query points and closest (discounted) historical 

state: ||"#$ − "#&|| + min+ 1 + - ./+(||"#$ − "+|| + ||"#& − "+||)
• Distance reduces response quality, increases cost
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Current state

xq0 xq1

si

Query state 1 Query state 2
• Wednesday
• March 2018, 5 pm
• 20.5°C interior
• 17°C exterior 

• Wednesday
• March 2018, 5 pm
• 21°C interior
• 17°C exterior 

• Wednesday
• March 2018, 4 pm
• 20.5°C interior
• 17°C exterior 



Outline

• Why study electricity in AI?
• Aligning predictability incentives between consumers and suppliers
• Experiential elicitation for electricity management agents
• Model of experiential elicitation ✓
• Experiential elicitation with relative value queries ✓
• Empirical results
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Experimental setup

• Synthetic data based on pecanstreet.org
• 3.5 million state MDP
• 100 households with different utility functions

49



Query strategies

• Meta-strategy: sample transition from believed best action and 
believed 2nd best action
• Info is immediately relevant
• Inexpensive and accurate
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Results: reward accrued

• By time 1000, GP_EVOI is 
getting 75-80% of OMNI

• Other strategies fail to 
outperform NULL

• Reason: GP_EVOI achieving 
same decision quality while 
paying less query cost
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Results: decision quality

• GP_EVOI achieves comparable 
decision quality 
• Asks many fewer queries
• ~44 by time 100
• ~180 by time 1000
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Results: query cost

• Fewer queries translates to 
much lower cost
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Contributions

• Introduce a model of experiential elicitation
• Develop an instance of the model focused on electricity use
• Introduce a relevant query type: the relative value query (RVQ)
• Gaussian process-based models naturally accommodate RVQs
• GP-based RVQ model performs well on synthetic data
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Future Work
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Future work

• Strategic interactions between market design and preference 
elicitation
• POU games with correlated prediction errors
• Separating functions: more technical work? Wider applicability?
• Applications outside electricity: sharing of scarce resources
• Cloud computing?

• Experiential elicitation
• More data?
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Extra Slides
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Making predictions from differences

• Related to rank learning
• Can convert any supervised learning alg.
• Standard: train f on !, # (matrices)
• Differences: train f on !$, !%, # and !%, !$, −#

• Problem: how to estimate expected value of information (EVOI)?
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Query strategies

• Meta-strategy: sample transition from believed best action and 
believed 2nd best action
• Info is immediately relevant
• Inexpensive and accurate

• Query strategies:
• RF_ALWAYS: Random forest-based model that always queries
• GP_ALWAYS: GP-based model that always queries
• GP_EVOI: GP-based model that queries if query EVOI is higher than cost
• OMNI: take the best action (without querying)
• NULL: take the null action (without querying)
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