Developing and Coordinating Autonomous Agents for Efficient Electricity Markets

Andrew Perrault

USC CAIS, March 7, 2018

About me: Cornell

- Computational sustainability: spatially-balanced Latin squares
 - Improved from exponential to $O(n^2)$
 - Leads to computer-aided discovery of constructive procedures for combinatorial objects (LeBras, Gomes and Selman, 2012)
- Machine learning in robotics
 - Using supervised learning to "train" robots to manipulate objects (and generalize to unseen objects)

FILTER V

PARTNER: ALL >

The School Fund

- Co-lead developer on crowdfunding platform for secondary school scholarships for students in the developing world
- 1183 years of education funded
- 12 partners in 9 countries

OUR STUDENTS

100% of your donations to students fund their education.

_

Allans

♥ Kenya

My parents died when we were so young. My aunt took us in and she has been taking care of us sinc...

Raised \$0

Needs **\$500**

School Year 2018

Boniface

I am the only child of a single mother. She works as a casual laborer and this helps in puttin...

Raised \$25

Needs \$475

School Year 2018

Dismas

I come from a family of four, my two siblings, my mother and I. My father left for the countryside

Raised \$0

Needs \$500

School Year 2018

About me: University of Toronto

- Using satisfiability (SAT) to solve stablematching problems with complementarities
 - Matching of medical residents to hospital internships uses incomplete alg.
 - SAT is complete, good performance
 - Using SAT has other advantages
 - Flexibility in adding constraints
 - Can search over the set of matchings

Drummond, P. and Bacchus (IJCAI-15)
P., Drummond and Bacchus (AAMAS-16)

This talk: autonomous agents for efficient electricity markets

- Why study electricity in Al?
- Aligning predictability incentives between consumers and suppliers
 - The big picture: market design, machine learning
 - P. and Boutilier (IJCAI-17)
- Experiential elicitation for electricity management agents
 - The big picture: preference elicitation, sequential decision-making, machine learning
 - P. and Boutilier (under review)

Other work in electricity: P. and Boutilier (AAMAS-14) and P. and Boutilier (IJCAI-15)

Why study electricity in AI?

- Reduce greenhouse gas (GHG) emissions
 - California target: 80% below 1990 levels by 2050
- Electrify and decarbonize electricity generation

The Technology Path to Deep Greenhouse Gas Emissions Cuts by 2050: The Pivotal Role of Electricity

James H. Williams, 1,2 Andrew DeBenedictis, Rebecca Ghanadan, 1,3 Amber Mahone, 1 Jack Moore, 1 William R. Morrow III, 4 Snuller Price, 1 Margaret S. Torn 1,4

Williams et al. (2012)

Achieving high renewable penetration

Overbuild

Transmission

Storage

Change consumer demand

- Changeable consumer demand, currently:
 - Air conditioning (around 30% of *all* electricity at peaks in summer)
 - Various other appliances (dishwashers, washing machines, dryers)
- After electrification:
 - Personal vehicles (about 60% of all energy used in transportation)
 - Space heating and water heating

The problem with demand response

- Do you notice?
- What do you do?
- Need a response policy

The value of autonomous agents (Part I)

 Redesign electricity markets around autonomous agents to increase market efficiency while paying attention to strategic aspects

The value of autonomous agents (Part II)

 Learn a household's preferences and take actions on their behalf

Aligning Predictability Incentives Between Consumers and Suppliers

P. and Boutilier, IJCAI-17

Electricity market

Consumer pays per kWh used, a fixedrate tariff

Supplier buys electricity in advance, but can also buy at the last minute for a higher price

Generator

Misalignment of incentives: Consumer's cost does not depend on predictability, but supplier's cost does

Prediction-of-use (POU) tariffs

- Each consumer makes a prediction ahead of time
 - They are charged based on:
 - How much they consume
 - How accurate their prediction was
- Consumers can form groups and be treated as one large consumer
 - But they can only do this if they can agree on how to split the costs

Robu, Vinyals, Rogers, and Jennings. Efficient Buyer Groups with Prediction-of-Use Electricity Tariffs (2017).

Contributions

- Extend POU games to support multiple profiles
 - Extension remains convex
 - Creates new enforcement problems addressed by separating functions
- Experimentally validate our approach using learned utility models

Outline

- Why study electricity in Al?
- Aligning predictability incentives between consumers and suppliers
 - Intro to cooperative games
 - Prediction-of-use games
 - Multiple-profile prediction-of-use games
 - Empirical results
- Experiential elicitation for electricity management agents

Cooperative games

- Set of agents *N*
- Can form coalitions
 - Characteristic value function $v: 2^N \to \mathbb{R}$ represents value each coalition can achieve
- Agents can defect to other coalitions, but are forced to cooperate within coalition
 - Coalition can enforce contracts

Sharing benefits

- Definition (stability): no set of agents has incentive to defect to another coalition
- Two major approaches:
 - Core allocation: strong stability guarantees, but hard computation
 - Shapley value: fairness, "easy" to approximate, no stability guarantee
- If game is convex (has a supermodular characteristic function):
 - Shapley value (and some approximations) is a core allocation (Shapley, 1971)

Cooperative games and markets

- Market/cooperative game duality
 - Shapley and Shubik (1969): exchange economies can be formulated as cooperative games
- Useful because cooperative games are more flexible than exchange economies

Outline

- Why study electricity in Al?
- Aligning predictability incentives between consumers and suppliers
 - Intro to cooperative games √
 - Prediction-of-use games
 - Multiple-profile prediction-of-use games
 - Empirical results
- Experiential elicitation for electricity management agents

Robu et al. (2017) POU games model

- Each household has a distribution over consumption in next time period—a profile
- Households can form coalitions
 - Coalition's profile is sum of members' profiles
- Each coalition predicts a baseline $b \in \mathbb{R}$

Household n_1

 $\mathcal{N}(\mu_1, \sigma_1)$

Robu et al. (2017) POU model

- Three-parameter POU tariff:
 - Charge p for realized consumption
 - Charge \overline{p} for each unit over baseline b
 - Charge p for each unit under baseline b
- Closed-form for optimal b
- Characteristic function is total cost in expectation
- Characteristic function is convex

Limitations of POU games

- The only decision agents have in POU games is what profile to declare
- The choice of profile is made before the game starts
- Agent have utility functions—choosing the best profile is an optimization
- Optimal choice depends on what other agents choose

Outline

- Why study electricity in Al?
- Aligning predictability incentives between consumers and suppliers
 - Intro to cooperative games √
 - Prediction-of-use games ✓
 - Multiple-profile prediction-of-use games
 - Empirical results
- Experiential elicitation for electricity management agents

Multiple-profile POU (MPOU) games

- Each profile has a value
- Each household is assigned a profile by the coalition
- Characteristic function (value of a coalition): sum of assigned profile values minus expected costs

Household n_1

$$\mathcal{N}(\mu_2, \sigma_2)$$
 v_2

Profile

$$\mathcal{N}(\mu_3, \sigma_3)$$
 v_3

Cost sharing in MPOU games

- Theorem: MPOU games are convex
- Additional complexity does not interfere with convexity
- However, having multiple profiles creates a new issue

Enforcing assigned actions

- Coalition assigns a profile to each agent
- Actions are only partially observable in MPOU
 - Coalition knows each agent's profiles
 - Selected profile only known to agent
 - Coalition observes realized consumption

Example of defection

- Assigned profile with lower value (v_2) , pays ex-ante according to assignment
- Uses profile with higher value (v_3)
- Defection not fully observable

Incentivizing use of the assigned profile

- A separating function (SF) maps realized consumption to a payment from coalition to agent
- Definition: D(x) is a separating function under assignment A of agents to profiles if:
 - $\mathbb{E}_{A(i)}\big(D(x)\big) + v\big(A(i)\big) > \mathbb{E}_{\overline{A}(i)}\big(D(x)\big) + v\left(\overline{A}(i)\right)$ (incentive) • $\mathbb{E}_{A(i)}\big(D(x)\big) = 0$ (zero-expectation)
- Theorem: sufficient conditions for SF existence, and poly-size LP formulation

Outline

- Why study electricity in Al?
- Aligning predictability incentives between consumers and suppliers
 - Intro to cooperative games √
 - Prediction-of-use games ✓
 - Multiple-profile prediction-of-use games √
 - Empirical results
- Experiential elicitation for electricity management agents

Results

- Agent utility functions learned from pecanstreet.org data
- POU: large social welfare loss due to lack of coordination
- MPOU: modest SW gain

Contributions

- Extend POU games to support multiple profiles
 - Extension remains convex
 - Creates new enforcement problems addressed by separating functions
- Experimentally validate our approach using learned utility models
 - Social welfare: POU < fixed-rate < MPOU

Experiential Elicitation for Electricity Management Agents

P. and Boutilier, under review

Representing humans in electricity interactions

- Passive observation is not enough
 - Need preference elicitation (PE)

Dual process theory

- System 1 (intuition): fast, frequent, emotional
- System 2 (reasoning): slow, infrequent, logical

Kahneman (2011)

Dual process theory in Al

- System 1: intelligent assistants in daily tasks
 - Energy use
 - Personal assistants
- System 2: infrequent, impactful decisions
 - Security games
 - Apartment/house choice
- Preference elicitation (PE) has focused on system 2 decisions
 - Assume that a user can respond accurately regardless of query asked

Experiential elicitation

- Can better engage System 1 by asking questions about the current context
 - What are you willing to pay to decrease the temperature by 1°F for one hour?
- Beneficial side effect: delay queries until they are relevant
 - Increases discounted utility

Contributions

- Introduce a model of experiential elicitation
- Develop an instance of the model focused on electricity use
 - Introduce a relevant query type: the relative value query (RVQ)
 - Gaussian process-based models naturally accommodate RVQs
 - GP-based RVQ model performs well on synthetic data

Outline

- Why study electricity in Al?
- Aligning predictability incentives between consumers and suppliers
- Experiential elicitation for electricity management agents
 - Model of experiential elicitation
 - Experiential elicitation with relative value queries
 - Empirical results

Markov decision processes

Markov decision processes (MDPs): sequential decision-making under

uncertainty

- States *S*
- Actions A
- Transition function $\{P_{sa}\}$
- Reward function r
- Discount factor γ

• Smart thermostat application: Shann and Seuken (2013, 2014)

Model of experiential elicitation

- MDP with unknown reward function
 - Agent knows *R*: distribution over reward functions
- Set of queries *Q*, each with:
 - Set of responses N_q
 - Response distribution D_q (with *known* dependence on state history and r)
- Query cost function C
 - Depends on state history and query

Model of experiential elicitation

- Repeat infinitely:
 - The agent asks the user zero or more queries
 - User responds according to response function
 - Agent incurs query cost
 - Agent chooses an action & state transitions according to transition function
- Goal: maximize reward minus query cost, w.r.t. to unknown reward function
- Observation: with risk neutral agent, can find optimal policy through MDP reduction

Relationship to other models

- Theorem: reducible to partially-observable Markov decision process (POMDP)
- Intuitively related to reinforcement learning

Outline

- Why study electricity in Al?
- Aligning predictability incentives between consumers and suppliers
- Experiential elicitation for electricity management agents
 - Model of experiential elicitation √
 - Experiential elicitation with relative value queries
 - Empirical results

Relative value queries

- Relative value query (RVQ) asks the user about difference in utility between states
 - What are you willing to pay to decrease the temperature by 1°C for one hour?
 - Formally (x_0, x_1) , with response y: user's estimate of $r(x_0) r(x_1)$
- Observation: relative value queries are enough to solve MDP
- Question: how do we make state value estimates given RVQs?

Gaussian processes (GPs)

- Universal function approximator
- Estimate at each point plus uncertainty info
- Naturally accommodates RVQs
 - Difference of Gaussian is Gaussian
- (Myopic) expected value of information (EVOI) estimation: sample query responses from GP posterior, average change in policy value across samples

Rasmussen and Williams (2006)

Query response and cost models

- Use distance between query points and closest (discounted) historical state: $||x_{q0}-x_{q1}||+\min_i(1+\delta)^{t-i}(||x_{q0}-x_i||+||x_{q1}-x_i||)$
 - Distance reduces response quality, increases cost
 - Wednesday
 - March 2018, 5 pm
 - 20.5°C interior
 - 17°C exterior

Query state 1 Query state 2 X_{q0} — X_{q1}

- Wednesday
- March 2018, 5 pm
- 21°C interior
- 17°C exterior

Current state

- Wednesday
- March 2018, 4 pm
- 20.5°C interior
- 17°C exterior

Outline

- Why study electricity in Al?
- Aligning predictability incentives between consumers and suppliers
- Experiential elicitation for electricity management agents
 - Model of experiential elicitation √
 - Experiential elicitation with relative value queries √
 - Empirical results

Experimental setup

- Synthetic data based on pecanstreet.org
- 3.5 million state MDP
- 100 households with different utility functions

Query strategies

- Meta-strategy: sample transition from believed best action and believed 2nd best action
 - Info is immediately relevant
 - Inexpensive and accurate

Results: reward accrued

- By time 1000, GP_EVOI is getting **75-80%** of OMNI
- Other strategies fail to outperform NULL
- Reason: GP_EVOI achieving same decision quality while paying less query cost

Results: decision quality

- GP_EVOI achieves comparable decision quality
 - Asks many fewer queries
 - ~44 by time 100
 - ~180 by time 1000

Results: query cost

 Fewer queries translates to much lower cost

Contributions

- Introduce a model of experiential elicitation
- Develop an instance of the model focused on electricity use
 - Introduce a relevant query type: the relative value query (RVQ)
 - Gaussian process-based models naturally accommodate RVQs
 - GP-based RVQ model performs well on synthetic data

Future Work

Future work

- Strategic interactions between market design and preference elicitation
- POU games with correlated prediction errors
- Separating functions: more technical work? Wider applicability?
- Applications outside electricity: sharing of scarce resources
 - Cloud computing?
- Experiential elicitation
- More data?

Extra Slides

Making predictions from differences

- Related to rank learning
- Can convert any supervised learning alg.
 - Standard: train f on (X, Y) (matrices)
 - Differences: train f on (X_0, X_1, Y) and $(X_1, X_0, -Y)$
- Problem: how to estimate expected value of information (EVOI)?

Query strategies

- Meta-strategy: sample transition from believed best action and believed 2nd best action
 - Info is immediately relevant
 - Inexpensive and accurate
- Query strategies:
 - RF_ALWAYS: Random forest-based model that always queries
 - GP_ALWAYS: GP-based model that always queries
 - GP_EVOI: GP-based model that queries if query EVOI is higher than cost
 - OMNI: take the best action (without querying)
 - NULL: take the null action (without querying)