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Abstract

In the early stages of an infectious disease crisis,
non-pharmaceutical interventions (NPIs) such
as quarantines and testing can play an impor-
tant role. Optimizing the delivery of NPIs is
challenging as they can impose substantial di-
rect costs (e.g., test costs) and human impacts
(e.g., quarantine of uninfected individuals) and
can be especially difficult to target for infections
that may spread pre- or asymptomatically. In
addition, superspreading, a common character-
istic of many infectious diseases, induces infor-
mational dependencies across a cluster (group
of individuals exposed by the same seed case).
We formulate NPI optimization as a partially
observable Markov decision process (POMDP),
which we aim to solve with reinforcement learn-
ing (RL). We find RL provides a promising tech-
nical foundation that even modern approaches
struggle. We propose a novel RL approach that
leverages a supervised learning decoder as well
as permutation invariant, fixed-size observation
representations. Through extensive experimen-
tation and evaluation, we show that our opti-
mized policy can outperform all benchmarks by
up to 27%. Additionally, we show that the poli-
cies discovered by RL can be distilled into de-
cision trees to simplify deployment while still
achieving strong performance. We publicly re-
lease our code and RL environments at: https:

//github.com/XueqiaoPeng/Covid-RLSL

Keywords: reinforcement learning, machine
learning, contact tracing, public health

1. Introduction

The COVID-19 pandemic has highlighted the crucial
role of non-pharmaceutical interventions (NPIs) in ef-
fectively managing the spread of infectious diseases.
Implementation of NPIs requires careful considera-
tion of multiple objectives, including prevention of
viral transmission and reduction of costs associated
with quarantine measures. Contact tracing has been
widely adopted and extensively studied in infectious
disease crises, particularly the context of COVID-19
(Keeling et al., 2020; Wang et al., 2022; Lai et al.,
2020; Kerr et al., 2021).

Nevertheless, optimizing NPIs within a cluster
remains a computationally challenging problem in
many settings. First, the action space is naturally
combinatorially large because an action must be se-
lected for each contact. Second, the problem is in-
herently multi-objective as interventions have costs
associated with them. For example, sensing actions,
such as testing, can provide valuable information, but
require resources to deploy, and quarantining has hu-
man impacts. Third, inferring the probability that
an individual is infectious can be difficult for infec-
tions that can be transmissible without symptoms.
Finally, the constraints of deployment make it desir-
able that NPI policies can be executed without the
need for computation.

In this work, we aim to develop a generic approach
for cluster-level optimization of NPIs based on rein-
forcement learning (RL) (Sutton and Barto, 2018).
We find that modern RL approaches fail to outper-
form naive baselines such as quarantining all contacts
or quarantining symptomatic contacts. We augment
RL in several ways. First, we observe that the high-
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Figure 1: We combine a infection probability decoder
that uses supervised learning with a reinforcement
learning-based policy.

dimensional state and action spaces exhibit substan-
tial permutation equivariance. For example, the or-
der of the contacts does not matter—permuting the
contacts and actions should produce the same result.
This observation and the combinatorial action space
motivate the development of an egocentric fixed-size
state for each contact. Second, we find that learn-
ing to predict the probability of infectiousness via
RL training is inefficient, and that this quantity has
an important structural role in optimal policies in
many settings. Thus, we develop a supervised learn-
ing module for the infectiousness inference task that
leverages convolutional neural networks (Goodfellow
et al., 2016), viewing the cluster state as if it were an
image.

We summarize our approach in Fig. 1. Our vi-
sion is that, in an infectious disease crisis, an agent-
based model simulating the infection would be de-
veloped based on observations and expert estimation
(see, e.g., McAndrew et al. (2022)). This model could
be used to evaluate and optimize policies, e.g., using
the methods of this paper, and could be refined using
contact tracing data from the field. We thus develop
a minimally complex agent-based model for SARS-
CoV-2 using published research from the early stages
of the pandemic and use it as a testbed.

This paper makes the following contributions:

• We propose a novel RL approach for finding opti-
mal contact tracing policies. Our approach com-
bines RL with supervised learning and a permu-
tation invariant, egocentric, state representation.
The resulting agent can be trained and deployed
simultaneously across all cluster sizes.

• To motivate the use of a supervised learning de-
coder, we show the existence of a simple, yet op-
timal, threshold policy for contact tracing in the
setting where no sensing actions are available.

• We develop a simple branching process-based
model for SARS-CoV-2 and compare our policies
with baselines. We show that we achieve better
rewards across a range of objective parameters,
even when distilled into decision trees that can
be widely distributed.

Related work We identify two main thrusts of
work that optimize contact tracing and NPIs: net-
work and branching process. Network models rep-
resent connections between individuals as edges in
a (possibly dynamic) contact graph (Meirom et al.,
2021; Kompella et al., 2020; Chen et al., 2023; Ou
et al., 2020, 2021). These approaches can lever-
age network structure in their decisions, but make
the strong assumption that the entire contact net-
work is known at each time step. The closest ex-
isting approach to ours is RLGN (Meirom et al.,
2021), which formulates the problem as a sequen-
tial decision-making task within a temporal graph
process. In contrast, we take a cluster-based, tree-
structured view of contagion (Kretzschmar et al.,
2021; Meister and Kleinberg, 2023), but add agent-
based temporal elements. This approach has the ad-
vantage of aligning more closely with the information
available to decision makers in many practical set-
tings and requires less detailed information to con-
struct.

2. Problem Description

Close Contacts
Time(days)

Seed Case

Infectious

Without
Symptoms

With
Symptoms

Exposed Quarantined Isolation

Figure 2: Cluster-based view of intervention plan-
ning.

We aim to create NPIs that operate on the cluster
level. Fig. 2 shows a motivating example, taken from
the cluster-level agent-based simulator we construct
for SARS-CoV-2. A seed case exposes six contacts
on the same day. Contacts 1 and 4 eventually be-
come infected and show symptoms on day 2 and day
3, respectively. Contacts 2, 3, 5, and 6 never become
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Table 1: Parameters of the SARS-CoV-2 cluster infection trajectory generator and test action model.

Parameter Assumed value Details and references

Incubation time
Log-normal: Log mean 1.57
days and log std 0.65 days

Mean: 5.94 days. Bi et al. (2020)

Duration of infectious period
7 days—2 days before and

5 days after onset if symptomatic
Bi et al. (2020)

Probability of infection 0.03 Perrault et al. (2020)
Probability that an infected
individual shows symptoms

0.8 Buitrago-Garcia et al. (2020)

Probability of symptoms
without infectiousness

0.01 per day Hinch et al. (2020)

Probability of an asymptomatic infection 0.2 Buitrago-Garcia et al. (2020)
Probability seed case is highly transmissive 0.109 Perrault et al. (2020)

Infectiousness multiplier for
highly transmissive individuals

24.4 Perrault et al. (2020)

Test parameters
TP = 0.71, FN = 0.01
FP = 0.29, TN = 0.99

Caulley et al. (2021)

Delays
Time to begin tracing a seed case = 3 days

Test reporting delay = 1 day
Assumed—realism.

Cluster Size Sample from uniform distribution on [2,40]
Assumed—we would like to find policies
that perform well across cluster sizes.

infected. In this example, we must make binary ac-
tion choice for each contact on each day: quarantine
or not. The goal of the NPI policy is to identify
and quarantine (isolate) contacts that are infected
and not quarantine uninfected contacts, but the in-
fectious state is not directly observable. The optimal
policy depends on trade-offs between different objec-
tives: failing to isolate infected contacts, quarantin-
ing uninfected contacts, and direct policy costs (e.g.,
of tests). Formally, we define the objective we aim to
maximize as:

(−S1 − α2 × S2 − α3 × S3)/N, (1)

where

• S1 is the count of transmission days where an
infected individual is not isolated,

• S2 is the count of days where a quarantined indi-
vidual is not infected, and α2 (which we assume
is in [0, 1]) is the weight for this term,

• S3 is the sum of the action costs (e.g., test cost)
and α3 is the weight for this term, and

• N , which is the number of contacts, normalizing
the objectives to a score per contact.

In summary, the objective function seeks to minimize
the number of transmission days, minimize the num-
ber of days of non-effective quarantine, and minimize
the cost associated with actions. Intuitively, 1/α2

is the number of quarantine days of an uninfectious

contact we are willing to accept in exchange for one
additional day of isolation of an infectious contact.

We remark that the objective value for any NPI
policy can be evaluated for a cluster as long as we
have an “infection trajectory” for each contact, a
record of if and when they become infectious and if
and when they exhibit symptoms (which is needed
if the policy execution depends on symptom status).
This is because these infection timing events are un-
affected by the NPI actions we consider.

Formally, we define an infection trajectory for con-

tact n ∈ N as the infectiousness state i
(t)
n ∈ I ∈ {0, 1}

and the symptom observation o
(t)
n ∈ {0, 1}, the true

infectiousness of contact and observable symptom
state, respectively, of contact n on day t, for all t ∈ [T ]
(where [T ] = {1, 2, . . . , T}). We assume that each of
these is binary for simplicity and that t is measured in

days, but these are not requirements (e.g., i
(t)
n could

be a continuous viral load and S1 could then repre-
sent risk-adjusted transmission days). We define an
cluster infection trajectory as an infection trajectory
for each contact in a cluster.

We require either a generator for cluster infection
trajectories or a large library of them that we can
sample from during training. As an example, we con-
struct a generator for early SARS-CoV-2 using the
parameters and sources shown in Tab. 1 (more de-
tails on our generator can be found in Appendix A).
Trajectories run from t = 1 to t = 30, and t = 3 is the
first time actions are allowed to be taken (modeling
a contact tracing delay). Many of the required com-
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ponents of such a generator are distributions that are
often estimated in the early stages of an outbreak.
Components that are not known can be filled in con-
servatively or as a belief distribution (e.g., by aggre-
gating expert opinion).

We allow for any set of NPI actions as long they
can be simulated on any infection trajectory and their
impact on S1, S2 and S3 is defined. For example, a
quarantine action, when applied to contact n on day

t, causes S1 to be not incremented if i
(t)
n = 1, and

increments S2 if i
(t)
n = 0. A more complex quaran-

tine action may have a failure rate (an individual may
not quarantine if directed), incur an additional finan-
cial cost (which would be added to S3), or may in-
clude sensing component (see below). An action with
a sensing component reveals information about the

contact’s infectiousness state i
(t)
n according to some

distribution, e.g., a test with a binary outcome ac-
cording to the confusion matrix of test parameters
in Table 1. More complex actions can combine sens-
ing and quarantine, e.g., test and quarantine only if
positive.

Our simulated environment has four actions: null
action (S3 cost of 0, no effect), quarantine (S3 cost
of 0), test (S3 cost of 1, draw outcome according to
Table 1), and test and quarantine only if results are
positive (draw outcome according to Table 1, S3 cost
of 1).

3. Approach

The optimization problem from the previous section
can be formulated as a partially observable Markov
decision process (POMDP). However, solving this
POMDP directly is intractable, even with modern RL
techniques. Some hope arrives from the result that,
under a simplified model that contains only quaran-
tine actions, the POMDP can be solved optimally if
the probability that an individual is infectious can
be estimated—but this is itself a challenging prob-
lem due to the high dimensional observation space.
Motivated by this observation, we formulate our so-
lution approach: we use a convolutional neural net-
work (CNN) to estimate the probability of infectious-
ness for each individual in a cluster, and this output,
along with an egocentric state representation for each
contact, serves as the state for the RL agent.

3.1. POMDP Formulation

We define a POMDP (Kaelbling et al., 1998) as
⟨S,A,R, P,Ω, O, γ, S0⟩, where S and A are the state
and action spaces, respectively, R : S ×A → R is the
reward function, P : S × A → ∆S is the transition
function, Ω is the observation state, O : S×A → ∆Ω
is the observation probabilities, γ ∈ [0, 1] is the dis-
count factor, and S0 : ∆S is the distribution of initial
states.

We describe how to interpret the control problem of
the previous section as a POMDP. The cluster infec-
tion trajectory and the current time t are contained in
the state. The only aspect of the state that changes
when an action is taken is the time t. As this is
a POMDP, the state is not observable by the agent
directly—instead, the agent has to rely on action-
dependent observations. The observation emitted
contains all of the information that is always avail-
able regardless of action (the time t, the symptom

o
(t)
n for each contact). Additionally, if an action with
a sensing component is taken, it contains the sensing
return (e.g., positive or negative, PCR cycle count).
The action set is combinatorially structured—we se-
lect one action for each contact in the cluster. If
we have N contacts, we have an action space of size
|Ap|N , where |Ap| is the number of actions avaiable
for each contact. The reward can be calculated for
any policy from Obj. 1 for any cluster infection tra-
jectory.

In principle, solving this POMDP results in the op-
timal control policy. In practice, solving it exactly is
not possible due to the high computational complex-
ity of the best-known algorithms. Nonetheless, we
show that the POMDP has useful structure that can
be exploited by RL methods.

3.2. Optimal Policy Without Sensing Actions

We consider a simplified POMDP where only quar-
antine actions are available. We show that, if the
posterior probability of infection can be calculated
exactly (i.e., the probability of infection of each con-
tact given all observations so far), the optimal policy
has a threshold-type form: if and only if the poste-
rior probability of infection is above a threshold, we
quarantine. We show this initially for a costless quar-
antine action with 100% efficiency as this is what we
use in experiments (Thm. 1). We then generalize the
result to any menu of non-sensing actions because
the expected reward of each action can be exactly
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calculated given the posterior probability of infection
(Thm. 2).

Let o
[t]
[N ] = {o(t

′)
n : 0 ≤ t′, n ∈ [N ]} represent

all symptom observations for a cluster up to day t.

Let p
(t)
n = P

(
i
(t)
n = 1 | o[t][N ]

)
represent the posterior

probability that contact n is infected given the symp-
tom observations so far.

Theorem 1 With a costless quarantine action that
is always successful and a null action, the optimal

policy is to quarantine only if p
(t)
n > α2

1+α2
.

Proof Because we have access to the exact posterior
probability of infection, we can calculate the expected
objective value for each action exactly:

E[r] =

{
−α2 · (1− p

(t)
n ) if quarantined.

−p
(t)
n if not quarantined.

(2)

We can then show that if p
(t)
n > α2

1+α2
, the quarantine

action has higher expected objective value.

We can use the above proof technique to derive the
optimal policy for any menu of non-sensing actions.
A useful generalization is when the quarantine action
has a cost and a failure rate.

Theorem 2 With a quarantine action with success
rate 0 ≤ β ≤ 1 and cost of 1, and a null action, the

optimal policy is to quarantine only if p
(t)
n > α2·β+α3

(1+α2)·β .

These results highlight the importance of the pos-
terior probability of infection. Next, we dedicate our

attention to producing useful estimates of p
(t)
n .

3.3. Supervised Learning Decoder

The generator for library of cluster infection trajec-

tories provides us with a large number of (o
[t]
[N ], i

(t)
[N ])

pairs (where i
(t)
[N ] is the infectiousness state for all con-

tacts in a cluster). A natural question is whether we

can produce useful estimates of p
(t)
n from o

[t]
[N ] using

a supervised learning approach. While it is possible
for RL to produce strong policies without explicitly

computing p
(t)
n , it is inefficiently positioned to do so

because the information about i
(t)
n must be inferred

from the reward signal.
A key question for applying supervised learning is

how to represent the observation space o
[t]
[N ]. We have

two desiderata. First, we would like the representa-
tion size to not vary with cluster size. We can also
achieve this property in the RL agent, resulting in
an agent that simultaneously be deployed across all
cluster sizes, which makes both training and deploy-
ment simpler. Second, there is an advantage to using
a representation that inherently accounts for the per-
mutation equivariance that arises due to the ordering
of individuals, i.e., if we permute the order of individ-
uals in an observation, our supervised learning model

would ideally predict i
(t)
[N ], but with the same permu-

tation applied.

After testing several representations that satisfy
these properties, we arrive at the 9×T matrix shown
in Fig. 3 (recall T is the trajectory length). This
is an egocentric representation of the observation—it
is from the perspective of a particular contact and
contains all information gathered so far. We train
the supervised learning model f to produce output

of dimension [0, 1]T , i.e., given o
[t]
[N ] for some t ≤ T ,

predict p
(t′)
n for all t′ ∈ [T ].

We show that this representation can achieve an
AUC of 0.95 for the SARS-CoV-2 cluster infection
trajectory generator if an appropriate architecture is
selected. We experiment with a variety of supervised
learning model architectures in Tab. 2 and find that
convolutional neural networks (CNNs) are generally
most effective. In single-layer CNN architectures,
we find that larger 2D convolutions tend to achieve
higher AUC, and that a single convolution layer fol-
lowed by a linear layer performs just as well as deeper
architectures—this setup of a (5, 2) 2D convolution
followed by a linear layer is what we use in the ex-
periments below.1

3.4. Reinforcement Learning

To make RL effective, we will develop a compact state
representation that includes supervised learning out-
puts. As with supervised learning, we want the RL
state representation to have the same size for all clus-
ters and to naturally encode permutation invariance.
In doing so, we can also reduce the action space size
from combinatorial by factorizing across the contacts,
i.e., training a single policy which is applied sepa-
rately to each contact—this is without loss of perfor-

mance in the setting without sensing actions if p
(t)
n

1. These experiments were performed on an earlier represen-
tation, which only had five rows. In the following sections,
we use (9, 2) 2D convolution followed by a linear layer.
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Figure 3: The observation representation used for su-
pervised learning, shown on a cluster of size 10 after
observing the outcome of t=2.

Table 2: We find that two-layer architectures using
a 2D convolution followed by a linear layer achieve
performance on par with larger models.

Cluster size = 4 8 16 32

1 Layer

Conv1d (5,2) 0.798 0.807 0.823 0.830
Conv1d (5,3) 0.814 0.830 0.835 0.839
Conv2d (5,2) 0.800 0.814 0.827 0.830
Conv2d (5,3) 0.832 0.820 0.838 0.840
Conv2d (5,4) 0.858 0.849 0.843 0.859
Conv2d (5,5) 0.864 0.895 0.893 0.893

2 Layer

Conv1d (5,2)
0.824 0.830 0.833 0.840

Conv1d (1,2)
Conv2d (5,3)

0.883 0.903 0.898 0.897
Conv2d (1,3)
Conv2d( 5,2)

0.955 0.960 0.947 0.961
Linear Layer
Conv2d (5,3)

0.951 0.960 0.940 0.964
Linear Layer

3 Layer
Conv1d (5,3)

0.958 0.957 0.950 0.961Conv1d (1,3)
Linear Layer

4 Layer

Conv1d (4,3)

0.958 0.958 0.953 0.965
Conv1d (2,3)
Conv1d (1,3)
Linear Layer

xgboost 0.763 0.732 0.804 0.770

is correct. The representation we use is a 9 × 3 ma-
trix shown in Fig. 4. As with the supervised learning
representation, it is egocentric and time-specific.

The following training procedure for the RL pol-
icy and supervised learning decoder is used. First, a
fixed but stochastic seed policy generates 200 cluster
infection trajectories and sensing actions, which are
used to train the supervised learning decoder. These
trajectories, along with the decoder outputs, are then
used to train the RL policy. If performance is suffi-
cient, terminate. If it is not (which happens when
the current RL policy produces actions with a distri-
bution that is too different from the seed policy), use

0.08 0.17 0.25

0.6 0.04 0.5

0 1 1

0 0 1

0 0 0

10 10 10

0 2 3

0 0 1

2D Convolution
Linear Layer

Observed State

Infection 
Probability

pn
(t) for past three days

pn
(t) for next three days

Symptom indicator for past three days

Test indicator for past three days

Test results for last three days

Cluster Size

CNN

Number of tests run across cluster in past three days

9*30

Input Matrix

Number of positive test across cluster in past three days

Figure 4: The supervised learning (CNN) output is
used as input to the RL state which prioritizes im-
mediately relevant information.

the current RL policy to select sensing actions, con-
tinue training the decoder using these new actions,
and then retrain the RL policy with the new super-
vised learning outputs. This process can be repeated
any number of times, or the RL policy and the de-
coder can be trained in parallel.

For RL training, we use Proximal Policy Optimiza-
tion (PPO) (Schulman et al., 2017). The RL policy
is a multi-layer perceptron with two layers and 128
hidden units (a standard architecture for PPO). In
experiments, for each of six different policy initializa-
tions (seed), train for 80000 environment interactions,
and pick the best based on 100 evaluation runs. All
training is performed on an Intel Xeon E5-2680 v4
with 28 cores and 128 GB of RAM (Center, 1987),
and a single RL training run takes 3 hours on average.

Note that the optimal RL policy depends on α2

and α3 and thus a different policy must be trained for
each different setting. However, the decoder depends
on (α2, α3) only indirectly due to the sensing actions
it sees in training. Thus, the same cluster infection
trajectories and decoder can be reused across multiple
RL training runs.

4. Experiments

We compare different control policies in our SARS-
CoV-2 cluster infection trajectory generator to evalu-
ate our policy search procedure. For α2, we use three
values of 0.05, 0.1 and 0.2. For α3, we use values of
0.01, 0.1, and 0.2.
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Table 3: Obj. 1 multiplied by 100 (higher is better). RLSL finds the best policy in all settings except
α2 = 0.05 and α3 = 0.2, where RLSL, Threshold, Symptom-Based Quarantine and Always Quarantine are
essentially tied—testing appears to provide no benefit here. The largest gaps between RLSL and others
occur when α2 is large and α3 is small.

α2 = 0.05

α3 = 0.01

α2 = 0.05

α3 = 0.1

α2 = 0.05

α3 = 0.2

α2 = 0.1

α3 = 0.01

α2 = 0.1

α3 = 0.1

α2 = 0.1

α3 = 0.2

α2 = 0.2

α3 = 0.01

α2 = 0.2

α3 = 0.1

α2 = 0.2

α3 = 0.2

RLSL −88.92± 1.68 −105.20± 1.03 −112.78± 2.23 −94.58± 2.34 −109.52± 2.54 −116.37± 3.17 −102.21± 2.39 −124.88± 2.82 −133.37± 3.35

Threshold −107.36± 7.67 −107.36± 7.67 −107.36± 7.67 −130.50± 4.76 −130.50± 4.76 −130.50± 4.76 −157.03± 4.37 −157.03± 4.37 −157.03± 4.37

Symptom-Based

Quarantine
−113.58± 2.85 −113.58± 2.85 −113.58± 2.85 −134.32± 6.88 −134.32± 6.88 −134.32± 6.88 −158.42± 10.24 −158.42± 10.24 −158.42± 10.24

14-Day

Quarantine
−141.50± 13.80 −141.50± 13.80 −141.50± 13.80 −175.50± 13.34 −175.50± 13.34 −175.50± 13.34 −276.50± 11.70 −276.50± 11.70 −276.50± 11.70

CDC 12/20 −203.67± 5.56 −213.40± 6.54 −228.80± 5.28 −235.37± 5.36 −246.30± 5.04 −277.23± 5.88 −310.77± 4.18 −330.67± 5.70 −344.10± 6.56

Always

Quarantine
−110.50± 2.95 −110.50± 2.95 −110.50± 2.95 −215.44± 2.66 −215.44± 2.66 −215.44± 2.66 −425.91± 1.76 −425.91± 1.76 −425.91± 1.76

No Quarantine −249.33± 7.01 −249.33± 7.01 −249.33± 7.01 −249.33± 7.01 −249.33± 7.01 −249.33± 7.01 −249.33± 7.01 −249.33± 7.01 −249.33± 7.01

Table 4: S1, S2 and S3 per contact across different
cluster sizes (lower is better and - indicates 0), where
RLSL and Threshold are set to α2 = α3 = 0.1. RLSL
tests slightly more than CDC 12/20 (1.55 vs. 0.918
tests per contact) to dramatically decrease S1 and S2.

S1 S2 S3

RLSL 0.459± 0.017 4.195± 0.148 1.553± 0.035

RLSL (N = 4) 0.391± 0.017 3.907± 0.013 1.430± 0.007

RLSL (N = 8) 0.419± 0.014 4.600± 0.032 1.689± 0.010

RLSL (N = 16) 0.524± 0.071 3.821± 0.049 2.017± 0.056

RLSL (N = 32) 0.541± 0.043 4.031± 0.029 2.043± 0.019

Threshold 1.198± 0.040 1.751± 0.013 -

Threshold (N = 4) 0.973± 0.059 1.976± 0.057 -

Threshold (N = 8) 1.009± 0.044 1.659± 0.036 -

Threshold (N = 16) 1.321± 0.048 1.617± 0.018 -

Threshold (N = 32) 1.438± 0.056 1.762± 0.028 -

Symptom-Based Quarantine 1.413± 0.036 0.228± 0.005 -

14-Day Quarantine 0.753± 0.007 10.274± 0.040 -

CDC 12/20 1.273± 0.068 7.334± 0.084 0.918± 0.004

Always Quarantine - 21.788± 0.085 -

No Quarantine 2.481± 0.046 - -

4.1. Comparison Policies

The policies introduced by this paper are: Thresh-
old is the threshold-type policy suggested in Sec. 3.2
(which does not use sensing actions); and RLSL, our
primary contribution, combining RL with a super-
vised learning decoder.

We compare to several benchmark policies.
Symptom-Based Quarantine quarantines if an in-
dividual exhibits symptoms on the day before the ob-
served day and otherwise does not. 14-day Quaran-
tine quarantines individuals from the initial day they
exhibit symptoms until either 14 days have passed
or until they no longer exhibit symptoms, whichever
is later. CDC 12/20 (Appendix D) is a complex
policy based on late 2020 (CDC) guidelines (CDC,
2020). It quarantines symptomatic contacts for 10

days. Asymptomatic contacts are tested on day 5
and released on day 8 if the test is negative and they
have no symptoms. If the test is positive, they are
quarantined for 14 days since the exposure. Always
Quarantine always performs the quarantine action.
No Quarantine always performs the null action.

Our experimental results report the average objec-
tive value and standard error taken over 30 random
clusters.

4.2. Analysis

We first show the performance among the all the poli-
cies in Tab. 3. We find that RLSL is able to find the
strongest policy in all settings except α2 = 0.05 and
α3 = 0.2, where RLSL, Threshold, Symptom-Based
Quarantine and Always Quarantine are all compet-
itive (with perhaps an edge to Threshold). Thresh-
old is the second strongest performer in all other set-
tings. RLSL can achieve large improvements over
the benchmarks of up to 35%. We see improvements
across all settings, but they are largest when α2 is
large and α3 is small, i.e., where tests can be lever-
aged and the decision to quarantine or not is chal-
lenging.

The best benchmark policy is Symptom-Based
Quarantine except when α2 = 0.05, where Always
Quarantine is slightly better. Symptom-Based Quar-
antine is often competitive with Threshold, despite
the presence of extensive asymptomatic and presymp-
tomatic transmission, as well as symptoms without
infection, in the generator.

We report objective values broken out by compo-
nent and by cluster size as measured per contact,
where α2 = α3 = 0.1 is used to train RLSL and
set the parameters (Tab. 4). Here we can intu-
itively grasp the effects of the different policies. 14-
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Table 5: RLSL and Threshold always achieve dramatically higher objective values than RL Only, which has
no supervised learning component. For α2 = 0.05 and α3 ∈ {0.1, 0.2}, RLSL with no sensing action scores
slightly better than standard RLSL. In many settings, we are able to find decision tree policies that perform
similarly to the RLSL or Threshold policies, which are much more complex.

α2 = 0.05

α3 = 0.01

α2 = 0.05

α3 = 0.1

α2 = 0.05

α3 = 0.2

α2 = 0.1

α3 = 0.01

α2 = 0.1

α3 = 0.1

α2 = 0.1

α3 = 0.2

α2 = 0.2

α3 = 0.01

α2 = 0.2

α3 = 0.1

α2 = 0.2

α3 = 0.2

RLSL −88.92± 1.68 −105.20± 1.03 −112.78± 2.23 −94.58± 2.34 −109.52± 2.54 −116.37± 3.17 −102.21± 2.39 −124.88± 2.82 −133.37± 3.35

RLSL (always test) −94.47± 0.97 −291.50± 3.97 −518.10± 3.38 −96.48± 3.14 −292.30± 2.86 −531.90± 4.48 −107.90± 4.23 −320.80± 4.70 −531.50± 3.97

RLSL (never test) −98.67± 2.33 −98.67± 2.33 −98.67± 2.33 −128.25± 2.50 −128.25± 2.50 −128.25± 2.50 −148.41± 6.44 −148.41± 6.44 −148.41± 6.44

RL Only −150.50± 5.19 −211.80± 7.81 −228.40± 6.84 −178.90± 7.63 −244.80± 8.06 −320.90± 9.70 −202.90± 13.32 −294.20± 13.34 −333.20± 7.55

Threshold −107.36± 7.67 −107.36± 7.67 −107.36± 7.67 −130.50± 4.76 −130.50± 4.76 −130.50± 4.76 −157.03± 4.37 −157.03± 4.37 −157.03± 4.37

Decision Tree −103.15± 4.20 −104.96± 3.12 −97.46± 3.66 −91.10± 1.30 −121.90± 2.66 −143.25± 3.80 −127.43± 2.52 −131.53± 2.89 −161.23± 3.03

Day Quarantine, CDC 12/20, and Always Quarantine
quarantine widely, resulting in S2 ≈ 10.3, 7.3, 21.8
days of quarantine without infection per contact (re-
spectively) and achieving S1 ≈ 0.75, 1.27, 0.0 as a
result. Symptom-based quarantine takes a differ-
ent approach, preventing only 57% of transmission
days, but incurring minimal costs to do so. The best
point in this trade-off space, which we visualize in Ap-
pendix C, depends on α2 and α3. RLSL uses about
50% more tests than CDC 12/20, but reduces S1 to
about 40% lower than 14-day quarantine with 60%
less S2 cost. Threshold is simply more efficient than
non-testing competitors at the trade-off between S1

and S2 by allowing S1 to be larger to vastly reduce
S2.

In an ablation study (Tab. 5), we gain a more de-
tailed view into the operation of the RLSL policy. We
see that the introduction of the SL outputs to the
RL state results in vastly improved performance in
all tested scenarios compared to RL Only, which uses
the state representation of Fig. 4 without the first
two rows. RL Only performs worse than Symptom-
Based Quarantine in all settings. RLSL (never test)
and the decision tree policy (described below) some-
times outperform RLSL, indicating that the training
procedure could still be improved.

Interpretable Policy In contrast to the bench-
marks, both RLSL and Threshold require neural net-
work outputs, i.e., computation, to run. We experi-
ment with a procedure to convert RLSL’s policy into
a decision tree that can be distributed on paper. We
use nine interpretable features: days since exposure,
days since positive test, days since symptom, yester-
day’s test result (0 if no test), whether tested yes-
terday, the number of symptomatic contacts in the
cluster today, the number of positive tests in the clus-
ter so far normalized by cluster size, and the cluster
size. Using these features, we train a decision tree

to predict RLSL’s action. We consider five types of
actions: (1) quarantine and no test, (2) quarantine
and test, (3) no quarantine and test, (4) no quaran-
tine and no test, (5) test and, if positive, quarantine;
otherwise, no quarantine. The results are shown in
the last row of Table 5. In three cases, the decision
tree policy is at least as strong as policy produced by
RLSL. We show two of the decision tree policies and
provide a detailed description of the training proce-
dure in Appendix E. We believe that these policies
can be further improved (see Discussion).

5. Discussion and Conclusion

This work aims to develop a generic multi-objective
optimization approach for cluster-level optimization
of NPIs. We formulate this problem as a POMDP
that we solve with RL, leveraging a supervised learn-
ing decoder, a permutation equivariant state repre-
sentation, and a factorized action space. We demon-
strate the potential of our approach—in a simple
agent-based model of SARS-CoV-2, we can achieve
substantially higher objective values than baseline
policies. Our optimized policy can outperform all
benchmarks by up to 27%. Moreover, the devel-
oped policies exhibit applicability across various clus-
ter sizes and can be trained on consumer hardware,
the fact that these policies can be implemented on
consumer-grade hardware enhances their practicality
and scalability, making them accessible for broader
real-world application. In addition, our approach
has shown promise in formulating strong and inter-
pretable policies across multiple settings. This as-
pect is particularly important as it contributes to the
transparency and understandability of the policies,
which are crucial factors in public health interven-
tions.
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Our agent-based model represents a classic prob-
abilistic framework for simulating disease dynamics,
which can be applied to other epidemics. It is built
using key disease parameters derived from various
sources during a crisis, incorporating the inherent un-
certainties in these estimates. In the early stages of a
crisis, we emphasize the importance of focusing on su-
perspreading dynamics, given their significant impact
on the effectiveness of interventions, as demonstrated
in our findings. Utilizing this model, we can create
an environment based on a branching process, which
is then optimized using the approach outlined in this
paper.

Our approach combines RL and SL techniques. RL
is a powerful optimization technique, but it has some
drawbacks. One significant limitation is its inherent
difficulty in exploit problem structure. In this set-
ting, the underlying POMDP has substantial struc-
ture in the belief state that can be exploited to greatly
simplify the learning task. We extract this informa-
tion using a combination of manual insight and brute
force supervised learning. It is an open question as
to whether RL techniques can learn to discover such
structure through experimentation. Another chal-
lenge with RL is its well-known instability during the
training phase (Dulac-Arnold et al., 2021). We at-
tempt to reduce this instability through using mul-
tiple initializations, but we still see evidence of it in
the α2 = 0.05, α ≥ 0.1 settings, where reducing the
action space produces higher objective values. De-
spite these challenges, we believe the advantages of
using RL, especially in terms of its capability to pro-
vide high-quality solutions for complex optimization
problems, outweigh its limitations.

While no existing work uses the same modeling
framework or policy search space as ours, in some
cases, we can compare our results. The model of Per-
rault et al. (2020) is most similar to ours, and the
risk-based quarantine (RBQ) policies they evaluate
can be compared to Threshold and RLSL, but due
to different assumptions, the amount of reduction in
transmission they achieve relative to the status quo is
much less. This is because they assume that individu-
als self-isolate even in the absence of an intervention
and that some individuals drop out of quarantine.
Threshold can be viewed as a policy that general-
izes the RBQ approach they suggest, in that Thresh-
old generates an infinite family of optimal risk-based
families for different risk tolerance levels. However,
Threshold’s policies are less interpretable than RBQ.

Kucharski et al. (2020) provides another point to
compare the effectiveness of contact tracing. In their
setting, combining self-isolation, household quaran-
tine, and comprehensive manual contact tracing of all
contacts resulted in a 64% reduction in disease trans-
mission, which is equivalent to S1. In our setting,
we find a reduction of 69.95% for two-week quaran-
tine, suggesting that interventions have a comparable
impact in our (much simpler) model for COVID-19
transmission.

The primary emphasis of this paper was produc-
ing strong cluster-level policies, but we believe this
setting may produce challenges in interpretable RL.
Most existing work on interpretable RL is focused on
the problem of producing an inherently interpretable
policy (e.g., a decision tree) that operates on a fixed
feature space (see, e.g., Milani et al. (2022)). In this
setting, we believe it is very challenging to train any
RL policy from raw features. From our experience,
the current method of learning interpretable decision-
tree policies, while obtaining great performance, as-
sumes an unconstrained decision-tree space, resulting
in less interpretable models. For some settings, the
performance of the decision tree is poor and unstable
when the depth of the tree is small. However, we find
that some strong interpretable policies that operate
on an interpretable feature set do exist and further
study of how to produce them may be worthwhile.

Looking ahead, an area for further investigation
is the development of more effective policies for the
coordination of limited resources across clusters and
across time, especially during the early stages of an
outbreak. We assume that the objective weights α are
given. In practice, it is non-trivial to determine these
weights. α2 depends on myriad factors, such as out-
break stage (can containment be achieved?), public
willingness, and may vary per cluster (e.g., a cluster
in a nursing home may have a lower α2 because of the
high risk to contacts of contacts). α3 combines con-
siderations of availability (tests, vaccines) and cost
(labor) and may be split into two weights, and both
of which may vary substantially with time.
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Appendix A. Details of Cluster
Infection Trajectory
Generator

We simulate the environment as follows:

Algorithm 1 Infection Simulation

1. Generate seed case.
case = generatecase()

2. Generate close contacts.
contacts = generatecontacts(case)

A.1. Generate Seed Case

The first step of the simulation is creating the seed
case for the cluster, an individual who is confirmed
as COVID-19 positive. These individuals are pre-
sumed to have experienced symptoms, followed by
self-isolation, and subsequent confirmation of their
positive test results. Prior to isolating themselves,
each seed case is assumed to have come into con-
tact with close contacts, potentially exposing them
to the SARS-CoV-2 virus. We consider the circum-
stance that seed case is highly transmissive—with
some probability, i.e., it is much more likely to trans-
mit to its contacts. We use a probability of 0.109 and
infectiousness multiplier of 24.4, values determined
by Perrault et al. (2020) to produce transmission het-
erogeneity similar to that observed in SARS-CoV-2.

A.2. Generate Close Contact

We initiate the cluster size by sampling from a uni-
form distribution across [2, 40], as we aim to produce
a policy that is strong as possible for all cluster sizes.
Subsequently, we must determine which contacts are
exposed to the virus and whether they become in-
fected. If the initial case is not highly contagious, the
probability of infection among close contacts is 0.03.
However, if the seed case is highly transmissive, the
infectiousness rate increases by a factor of 24.4.
Once a contact is infected, there is an 0.8 probabil-

ity of developing symptoms. Independently, there is
a probability of 0.01 per day of displaying symptoms
independently of infection status. We obtain the time
from exposure to symptoms from a log-normal distri-
bution with a log mean of 1.57 days and a log stan-
dard deviation of 0.65 days. Similarly, the time to

exhibit symptoms is drawn from a log-normal distri-
bution with a log mean of 2.70 days and a log stan-
dard deviation of 0.15 days, as described in Bi et al.
(2020).

Algorithm 1: generatecontacts(case)

Input: Seed case: i
Output: Close Contact j and its symptom and

status of infection
Initialize contacts[] from contact distribution
if i is highly transmissive then

pinfected = pinfected ∗ 24.4
end
for j in contacts[] do

if Bernoulli(pinfected) then
j.infected = 1
if Bernoulli(psymptomatic)=1 then

j.symp start = Lognormal(1.57, 0.65)
j.symp duration = Lognormal(2.70,
0.15)
j.inf duration =Lognormal(6.67, 2)
j.symp day = [j.symp start,
j.symp start+j.symp duration]
j.inf day = [j.symp start - 2,
j.symp start+j.inf duration]

else
j.inf start = Lognormal(1.57, 0.65)
j.inf duration =Lognormal(6.67, 2)
j.inf day = [j.inf start - 2,
j.symp start+j.inf duration]

end
symptomatic not infected day
=Binomial(psymptomatic not infected, T )
for day in T do

if symptomatic not infected day[day] = 1
then

j.sym day[day] = 1
end

end
return contacts

Appendix B. Experimental Settings

In this section, we will explain the detail of our ex-
perimental settings.

B.1. Supervised Learning Model

In the initial supervised learning model, we com-
mence by running the simulator 200 times to generate
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the input data and corresponding labels. We perform
Z-score normalization on the input data. The model
is then trained using Adam optimizer with learning
rate = 0.01 for a total of 200 epochs.

B.2. RL Model

Our process begins by training the RL model with
the original Supervised Learning (SL) model for 50
epochs, gathering new trajectories in the process. Be-
cause our model considers that the actions taken by
one agent during testing affect the features of other
nearby contacts in the cluster, we subsequently re-
train the SL model. Following this, we employ the
updated SL model to train our RL model using the
Proximal Policy Optimization (PPO) method (Schul-
man et al., 2017). In our experimental setup, we con-
duct RL training for a total of 200 epochs, with each
epoch consisting of 800,000 steps.

Appendix C. Comparison Across α2

We consider the α2 ∈ [0, 0.7] and plot the value of
Obj. 1 of all baselines in Fig. 5. For CDC 12/20
policy, we use the setting of α3 = 0.01. For each
α2, we train each policies for 100 epochs and test 30
times to get the average value. As observed, with the
increase of α2, the threshold policy gradually con-
verges to −205. Symptom-based quarantine experi-
ences a marginal reduction. Notably, when α2 reaches
0.55, both No Quarantine and Symptom-based quar-
antine exhibit equivalent objectives. The most sub-
stantial decrease occurs in the Always Quarantine
policy, closely followed by the 14-day quarantine pol-
icy. This is primarily due to the fact that in these
two policies, the value of S2 is significantly higher
compared to other policies. CDC 12/20 policy’s per-
formance is slightly better than 14-day quarantine
policy when α2 approximately larger than 0.45.

Appendix D. CDC 12/20 Policy

We have translated the quarantine guidelines pro-
vided by the Centers for Disease Control and Pre-
vention (CDC) as of December 10, 2020 CDC (2020).
These guidelines recommend quarantining individ-
uals who have had close contact with a confirmed
COVID-19 case. There are two options available for
ending the quarantine period.

• After day 10 without testing.

Figure 5: Comparison of benchmarks and Threshold
across α2 values.

• After day 7 after receiving a negative test result
(test must occur on day 5 or later)

We condense this policy into a decision tree, as illus-
trated in Fig. 6.

no symptoms 
until day 5

no symptoms until day 8

quarantine to day 11test on day 5

no quarantine 
after day 8

Yes No

NoYes

quarantine to day 11

test negative

quarantine to day 15

test positive

Figure 6: The decision tree for CDC 12/20 Policy.

Appendix E. Interpretable Policy

In this section, we present two decision trees distilled
from our model, as depicted in Figs. 7 and 8. We
first test RLSL policy for 100 epochs and collect the
dataset, in which there are nine features and the ac-
tion taken by agent as the label. The features are
days since exposure, days since positive test, days
since symptom, yesterday’s test result (0 if no test),
whether tested yesterday, the number of symptomatic
contacts in the cluster today, the number of positive
tests in the cluster so far normalized by cluster size,
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and the cluster size.We consider five types of actions:
(1) quarantine and no test, (2) quarantine and test,
(3) no quarantine and test, (4) no quarantine and no
test, (5) test and, if positive, quarantine; otherwise,
no quarantine. We use Gini inpurity to divide the de-
cision trees. In our decision tree, left branch means
yes and right branch means no. To get better perfor-
mance, we try different depths for the decision tree.
For α2 = 0.05 and α2 = 0.1, we set depth = 4, and
for α2 = 0.2, the depth of the tree is 10. We also
try 10 runs for each setting and select the best from
among all the decision trees we generate.
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Figure 7: The decision tree for RLSL model with α2 = 0.1 and α3 = 0.01
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Figure 8: The decision tree for RLSL model with α2 = 0.1 and α3 = 0.1
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